Raul,

Yes. What I need is a function f (x,y) using the Cartesian coordinates x &
y that will produce the z dimension in the ellipse when I step x & y over
the plane.

Skip

Skip Cave
Cave Consulting LLC

On Fri, Mar 6, 2015 at 11:03 PM, Raul Miller <[email protected]> wrote:

> I imagine they'd go something like this:
>
>    X=. a*((sin P) */ cos T)
>    Y=. b*(((sin P) */ sin T)
>    Z=. c*((cos P) +/ T*0)%2
>
> The assumption would be that when they are omitted they are 1.
>
> The trick is recognizing how these parametric equations correspond to
> your original expression.
>
> Thanks,
>
> --
> Raul
>
> On Sat, Mar 7, 2015 at 12:00 AM, Skip Cave <[email protected]>
> wrote:
> > Ok now I'm confused. Nowhere do I see where we set the length of the
> three
> > axes a, b, and c. Also the step verb has lots of variables in it, like a,
> > w, n, and z that I don't see defined anywhere.
> > steps=: 3 : 'a+(w)*(i.n+1)%n[w=.z-a[''a z n''=.y'
> >
> > How do I change the lengths of the axes a, b,and c?
> >
> > Skip Cave
> > Cave Consulting LLC
> >
> > On Fri, Mar 6, 2015 at 10:25 PM, Joe Bogner <[email protected]> wrote:
> >
> >> I don't know what I'm doing other than copy/pasting, but the example
> from
> >> the plot demo looks pretty close:
> >>
> >> load 'plot'
> >> pd 'clear'
> >> steps=: 3 : 'a+(w)*(i.n+1)%n[w=.z-a[''a z n''=.y'
> >> P=. steps 0 1p1 30
> >> T=. steps 0 2p1 40
> >> X=. ((sin P) */ cos T)
> >> Y=. ((sin P) */ sin T)
> >> Z=. ((cos P) +/ T*0)%2
> >>
> >> pd 'backcolor blue'
> >> pd 'new 0 0 1000 1000'
> >>
> >> pd 'type surface'
> >> pd 'viewpoint 2 2 2;color grayscale'
> >> pd X;Y;Z
> >> pd 'show'
> >>
> >>
> >>
> >> On Fri, Mar 6, 2015 at 11:18 PM, Raul Miller <[email protected]>
> >> wrote:
> >>
> >> > This is something of an aside - I don't know what I'm doing yet, well
> >> > enough to implement this via jhs, but here's an ellipsoid:
> >> >
> >> > https://www.shadertoy.com/view/XtlGDX
> >> >
> >> > You can tweak the a, b, and c radius values near the top of the script
> >> > (which should display on the right side of the screen) and hit the
> >> > play button to see the change.
> >> >
> >> > Thanks,
> >> >
> >> > --
> >> > Raul
> >> >
> >> > On Fri, Mar 6, 2015 at 10:38 PM, Skip Cave <[email protected]>
> >> > wrote:
> >> > > Looking a bit better, but no cigar:
> >> > >
> >> > > a=:3[b=:3[c=:3
> >> > >
> >> > >  X=:4 :0
> >> > >
> >> > > a*(cos x)*cos y
> >> > >
> >> > > )
> >> > >
> >> > >  Y=:4 :0
> >> > >
> >> > > b*(cos x)*sin y
> >> > >
> >> > > )
> >> > >
> >> > >  Z=:3 :0
> >> > >
> >> > > c*(sin y)
> >> > >
> >> > > )
> >> > >
> >> > > steps=: 3 : 'a+(w)*(i.n+1)%n[w=.z-a[''a z n''=.y'
> >> > >
> >> > > draw=:3 :0
> >> > >
> >> > > angles=: steps _1p1 1p1 100
> >> > >
> >> > > uangles =: steps _1.5708 1.5708 100
> >> > >
> >> > > x=. uangles X"0 _ angles
> >> > >
> >> > > y=. uangles Y"0 _ angles
> >> > >
> >> > > z=. Z uangles
> >> > >
> >> > > 'surface' plot x;y;z
> >> > >
> >> > > )
> >> > >
> >> > >  draw''
> >> > >
> >> > >
> >> > > output at: http://bit.ly/1wNlQe3
> >> > >
> >> > >
> >> > > Skip Cave
> >> > > Cave Consulting LLC
> >> > >
> >> > > On Fri, Mar 6, 2015 at 9:18 PM, Raul Miller <[email protected]>
> >> > wrote:
> >> > >
> >> > >> steps=: 3 : 'a+(w)*(i.n+1)%n[w=.z-a[''a z n''=.y'
> >> > >>
> >> > >> Thanks,
> >> > >>
> >> > >> --
> >> > >> Raul
> >> > >>
> >> > >> On Fri, Mar 6, 2015 at 10:08 PM, Skip Cave <
> [email protected]>
> >> > >> wrote:
> >> > >> > Here's what I got whaen I ran Jon's code:
> >> > >> >
> >> > >> > a=:3[b=:3[c=:3
> >> > >> >
> >> > >> >  X=:4 :0
> >> > >> >
> >> > >> > a*(cos x)*cos y
> >> > >> >
> >> > >> > )
> >> > >> >
> >> > >> >  Y=:4 :0
> >> > >> >
> >> > >> > b*(cos x)*sin y
> >> > >> >
> >> > >> > )
> >> > >> >
> >> > >> >  Z=:3 :0
> >> > >> >
> >> > >> > c*(sin y)
> >> > >> >
> >> > >> > )
> >> > >> >
> >> > >> >  draw=:3 :0
> >> > >> >
> >> > >> > angles=: steps _1p1 1p1 100
> >> > >> >
> >> > >> > uangles =: steps _1.5708 1.5708 100
> >> > >> >
> >> > >> > x=. uangles X"0 _ angles
> >> > >> >
> >> > >> > y=. uangles Y"0 _ angles
> >> > >> >
> >> > >> > z=. Z uangles
> >> > >> >
> >> > >> > 'surface' plot x;y;z
> >> > >> >
> >> > >> > )
> >> > >> >
> >> > >> >  draw''
> >> > >> >
> >> > >> > |value error: steps
> >> > >> >
> >> > >> > | angles=: steps _3.14159 3.14159 100
> >> > >> >
> >> > >> >
> >> > >> > Skip Cave
> >> > >> > Cave Consulting LLC
> >> > >> >
> >> > >> > On Fri, Mar 6, 2015 at 8:56 PM, Jon Hough <[email protected]>
> >> > wrote:
> >> > >> >
> >> > >> >>
> >> > >> >> I butchered Raul's script slightly. But the resulting graph is
> >> still
> >> > >> >> weird. Not sure if it's an improvement.
> >> > >> >>
> >> > >> >>
> >> > >> >> a=:3[b=:3[c=:3
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> X=:4 :0
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   a*(cos x)*cos y
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> )
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> Y=:4 :0
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   b*(cos x)*sin y
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> )
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> Z=:3 :0
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> c*(sin y)
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> )
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> draw=:3 :0
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   angles=: steps _1p1 1p1 100
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   uangles =: steps _1.5708 1.5708 100
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   x=. uangles X"0 _ angles
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   y=. uangles Y"0 _ angles
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> z=.  Z uangles
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>   'surface' plot x;y;z
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> )
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >>
> >> > >> >> draw''
> >> > >> >>
> >> > >> >> > From: [email protected]
> >> > >> >> > To: [email protected]
> >> > >> >> > Date: Sat, 7 Mar 2015 02:46:35 +0000
> >> > >> >> > Subject: Re: [Jprogramming] Plotting a 3D Ellipse
> >> > >> >> >
> >> > >> >> > It seems you are using [-pi,pi] as the range of all your
> angles.I
> >> > >> think
> >> > >> >> you need to use [-pi/2,pi/2] as the range for the u argument (in
> >> the
> >> > >> >> wikipedia page).
> >> > >> >> >
> >> > >> >> > > From: [email protected]
> >> > >> >> > > Date: Fri, 6 Mar 2015 21:35:37 -0500
> >> > >> >> > > To: [email protected]
> >> > >> >> > > Subject: Re: [Jprogramming] Plotting a 3D Ellipse
> >> > >> >> > >
> >> > >> >> > > Hmm...
> >> > >> >> > >
> >> > >> >> > > I notice that load'graph' no longer provides the steps verb
> >> > >> mentioned
> >> > >> >> > > in http://www.jsoftware.com/books/pdf/expmath.pdf
> >> > >> >> > >
> >> > >> >> > > So here's a workalike:
> >> > >> >> > >    steps=: 3 : 'a+(w)*(i.n+1)%n[w=.z-a[''a z n''=.y'
> >> > >> >> > >
> >> > >> >> > > and that gives us an example of a surface plot.
> >> > >> >> > >
> >> > >> >> > > Next, we need a parametric representation of the ellipse,
> and
> >> > >> >> > > http://en.wikipedia.org/wiki/Ellipsoid#Parameterization
> looks
> >> > like
> >> > >> a
> >> > >> >> > > plausible approach there.
> >> > >> >> > >
> >> > >> >> > > Using that, and
> >> http://www.jsoftware.com/help/jforc/graphics.htm
> >> > >> as a
> >> > >> >> > > starting point, it seems to me that I ought to be able to
> draw
> >> an
> >> > >> >> > > ellipse like this:
> >> > >> >> > >
> >> > >> >> > > a=:3[b=:4[c=:5
> >> > >> >> > >
> >> > >> >> > > X=:4 :0~
> >> > >> >> > >   a*(cos x)*/cos y
> >> > >> >> > > )
> >> > >> >> > >
> >> > >> >> > > Y=:4 :0~
> >> > >> >> > >   b*(cos x)*/sin y
> >> > >> >> > > )
> >> > >> >> > >
> >> > >> >> > > Z=:4 :0~
> >> > >> >> > >   c*(sin x)*/1: y
> >> > >> >> > > )
> >> > >> >> > >
> >> > >> >> > > draw=:3 :0
> >> > >> >> > >   angles=: steps _1p1 1p1 100
> >> > >> >> > >   x=. X angles
> >> > >> >> > >   y=. Y angles
> >> > >> >> > >   z=. Z angles
> >> > >> >> > >   'surface' plot x;y;z
> >> > >> >> > > )
> >> > >> >> > >
> >> > >> >> > > draw''
> >> > >> >> > >
> >> > >> >> > > Sadly, that's not an ellipse.
> >> > >> >> > >
> >> > >> >> > > But I do not have enough familiarity with plot to know
> whether
> >> > I've
> >> > >> >> > > screwed up my math or if there's a defect in plot -- I don't
> >> know
> >> > >> how
> >> > >> >> > > to isolate the problem.
> >> > >> >> > >
> >> > >> >> > > That said, a quick test with a 3d model of a cube:
> >> > >> >> > >
> >> > >> >> > >    'surface' plot ;/|:#:i.8
> >> > >> >> > > |NaN error: ncile
> >> > >> >> > >
> >> > >> >> > > ...suggests that plot isn't really designed to represent 3d
> >> > solids.
> >> > >> >> > >
> >> > >> >> > > Still, that does not eliminate any potential errors on my
> part.
> >> > >> >> > >
> >> > >> >> > > On the other hand, maybe the right approach would be to use
> jhs
> >> > and
> >> > >> >> > > generate a distance field renderer along the lines of what
> you
> >> > see
> >> > >> at
> >> > >> >> > > shadertoy.com.
> >> > >> >> > >
> >> > >> >> > > I'll have to think a bit to see if I can pull off something
> >> like
> >> > >> that.
> >> > >> >> > > (I think that that would only work for people who have
> adequate
> >> > >> >> > > graphics hardware support. But I think you have a suitable
> >> > graphics
> >> > >> >> > > card?)
> >> > >> >> > >
> >> > >> >> > > Thanks,
> >> > >> >> > >
> >> > >> >> > > --
> >> > >> >> > > Raul
> >> > >> >> > >
> >> > >> >> > >
> >> > >> >> > > On Fri, Mar 6, 2015 at 7:10 PM, Skip Cave <
> >> > [email protected]>
> >> > >> >> wrote:
> >> > >> >> > > > I want to plot a 3D ellipse (ellipsoid) and then be able
> to
> >> > change
> >> > >> >> the
> >> > >> >> > > > lengths of the three axes. The equation of an ellipse with
> >> axis
> >> > >> >> lengths of
> >> > >> >> > > > a, b, & c is:
> >> > >> >> > > >
> >> > >> >> > > >  ((x^2)%(a^2)) + ((y^2)%(b^2)) + ((z^2)%(c^2)) = 1
> >> > >> >> > > >
> >> > >> >> > > > How can I arrange this so it can be plotted in a 3-D plot
> in
> >> J,
> >> > >> and
> >> > >> >> then be
> >> > >> >> > > > able to  experiment with the lengths of the axes?
> >> > >> >> > > >
> >> > >> >> > > > Skip
> >> > >> >> > > >
> >> > >> >> > > > Skip Cave
> >> > >> >> > > > Cave Consulting LLC
> >> > >> >> > > >
> >> > >> >>
> >> > ----------------------------------------------------------------------
> >> > >> >> > > > For information about J forums see
> >> > >> >> http://www.jsoftware.com/forums.htm
> >> > >> >> > >
> >> > >>
> ----------------------------------------------------------------------
> >> > >> >> > > For information about J forums see
> >> > >> http://www.jsoftware.com/forums.htm
> >> > >> >> >
> >> > >> >> >
> >> > ----------------------------------------------------------------------
> >> > >> >> > For information about J forums see
> >> > >> http://www.jsoftware.com/forums.htm
> >> > >> >>
> >> > >> >>
> >> > ----------------------------------------------------------------------
> >> > >> >> For information about J forums see
> >> > http://www.jsoftware.com/forums.htm
> >> > >> >>
> >> > >> >
> >> ----------------------------------------------------------------------
> >> > >> > For information about J forums see
> >> > http://www.jsoftware.com/forums.htm
> >> > >>
> ----------------------------------------------------------------------
> >> > >> For information about J forums see
> >> http://www.jsoftware.com/forums.htm
> >> > >>
> >> > >
> ----------------------------------------------------------------------
> >> > > For information about J forums see
> http://www.jsoftware.com/forums.htm
> >> > ----------------------------------------------------------------------
> >> > For information about J forums see
> http://www.jsoftware.com/forums.htm
> >> >
> >> ----------------------------------------------------------------------
> >> For information about J forums see http://www.jsoftware.com/forums.htm
> >>
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to