I thought it was the first example in p. since I never realized there was a p..
I thought I was getting roots of a polynomial which I have used. 

Sorry.  Linda 

-----Original Message-----
From: [email protected] 
[mailto:[email protected]] On Behalf Of Roger Hui
Sent: Thursday, January 7, 2016 9:27 AM
To: Programming forum
Subject: Re: [Jprogramming] the p. equation solver

I don't understand your question.  p. (one dot) is different from p.. (two 
dots), and all four examples in your msgs seem correct.


On Thu, Jan 7, 2016 at 2:58 AM, Linda A Alvord <[email protected]>
wrote:

> Roger,
>
> If I type in fresh jqt:
>
> p. 1 2 3 4 5
>
> ┌─┬───────────────────────────────────────────────────────────────────
> ────────┐
> │5│0.137832j0.678154 0.137832j_0.678154 _0.537832j0.358285 
> _0.537832j_0.358285│
>
> └─┴───────────────────────────────────────────────────────────────────────────┘
>    p.. 1 2 3 4 5
> 2 6 12 20
>
> However I get the same answer when I copied the example in the 
> vocabulary in the second example.
>
> What explains this?
>
> Linda
>
> -----Original Message-----
> From: [email protected] [mailto:
> [email protected]] On Behalf Of Roger Hui
> Sent: Thursday, January 7, 2016 2:20 AM
> To: Programming forum
> Subject: Re: [Jprogramming] the p. equation solver
>
> p. uses Laguerre's Method with polishing on the original polynomial 
> using Newton iteration.  It can no doubt be simplified and/or improved.
>
> A couple of examples of using p. :
>
>    c=: p. <1+i.20
>    $c
> 21
>    3 7$c
> 2432902008176640000 _8752948036761600000 13803759753640704000
> _12870931245150988800 8037811822645051776 _3599979517947607200
> 1206647803780373360
> _311333643161390640    63030812099294896   _10142299865511450
>  1307535010540395    _135585182899530       11310276995381
> _756111184500
>         40171771630          _1672280820             53327946
>  _1256850               20615                 _210                   1
>
> c are the coefficient's of Wilkinson's polynomial < 
> https://en.wikipedia.org/wiki/Wilkinson%27s_polynomial>, whose roots 
> are
>
>    p. c
> ┌─┬──────────────────────────────────────────────────┐
> │1│20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1│ 
> └─┴──────────────────────────────────────────────────┘
>
>
>
> On Wed, Jan 6, 2016 at 10:53 PM, 'Bo Jacoby' via Programming < 
> [email protected]> wrote:
>
> > Dear experts.
> > The equation solver (p.) is marvelous! However I do not know how it 
> > is implemented.
> > Computing the complex roots of algebraic equations should be 
> > considered basic. If you can do that, then you need not to learn 
> > about division or square roots.
> > I made this elementary equation solver in J. (Durand-Kerner method).
> >
> > poly =.+/@([*]^~/~i.@#@[)
> >
> > step=.]-poly*[:*/-/~@]^<:@=/~@i.@<:@#@[
> >
> >  iter =.](step^:_)_0.4j0.9^i.@<:@#    norm =.[:(%
> {:)]}.~[:-[:+/[:*/\0=|.
> > solv =.iter@norm
> > A polynomial is represented by an array of coefficients, the 
> > constant term first.
> > poly computes values of a polynomial.
> >    0 40 0 _10 0 0 poly i:4
> > 480 150 0 _30 0 30 0 _150 _480
> > norm normalizes a polynomial such that the leading coefficient is 
> > one, without changing the roots.
> >    norm 0 40 0 _10 0 0
> > 0 _4 0 1
> > step improves a set of approximate roots to a normalized polynomial.
> >    0 _4 0 1 step _0.4j0.9^i.3
> > 1.98849j0.159402 _0.860465j_0.735105 _1.12803j0.575703 iter makes a 
> > sufficient number of steps.
> >    iter 0 _4 0 1
> > 2 0 _2
> > solv solves even non-normalized polynomials
> >    solv 0 40 0 _10 0 0
> > 2 0 _2
> > My questions:
> > 1. Is this how (p.) is implemented?
> > 2. Can it be simplified or improved?
> > Thanks!  Bo.
> > --------------------------------------------------------------------
> > -- For information about J forums see 
> > http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to