The challenge is at the end. First a table for a finite continued fraction that approximates e =: ^ 1 . --Kip Murray
The table below summarizes a finite continued fraction which begins 1 1 + ------------- 1r12 1r2 + -------- 1r60 1 + ------ 1 + . . . table _1 1 1r12 1r60 1r140 1r252 1r396 1 1r2 1 1 1 1 1 1 3 19r7 193r71 2721r1001 49171r18089 1084483r398959 You must ignore the _1 in the upper left corner. You see how the first row identifies numerators and the second row numbers on the "diagonal" of the continued fraction. The third row gives the "convergents", results of terminating the continued fraction at a diagonal number. The first four convergents are 1 , (1 + 1 % 1r2) , (1 + 1 % 1r2 + 1r12 % 1) , (1 + 1 % 1r2 + 1r12 % 1 + 1r60 % 1) The convergents of this continued fraction approximate the number e =: ^ 1 . 2 * 0.5 * {: table 1 3 2.714285714 2.718309859 2.718281718 2.718281829 2.718281828 Now, how would you write verb cv which provides the third row of the table given the first two? 2 {. table _1 1 1r12 1r60 1r140 1r252 1r396 1 1r2 1 1 1 1 1 cv 2 {. table 1 3 19r7 193r71 2721r1001 49171r18089 1084483r398959 --Kip Murray -- Sent from Gmail Mobile ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm