>should the anonymous verb created by
verb adv_locale_
automatically be executed in (locale)?
The existing behaviour can be leveraged with duck typing in mind.
One easy workaround I didn't get too deep in is based on this magic fork
inl_z_ =: ((cocurrent@] ".@] [)"1 0 boxopen)
executes string x in every locale y
A conjunction version lets you access local parameters,
lr_z_ =: 3 : '5!:5 < ''y'''
inlC_z_ =: 2 : ' (([: <^:(0=L.) v"_) inl~ m ,"1 '' '',"1 lr@:]) : (([:
<^:(0=L.) v"_) inl~ (lr@:[),"1 '' '' ,"1 m ,"1 '' '',"1 lr@:] )'
inlA =: 1 : 'u inlC (18!:5 '''')'
ab_far_ =: 1 : (':';'x + a u y')
a_far_ =: 3
a_base_ =: 33
a ' + ab ' inlA_far_ 3
39
b =: 4 : 'x + a + y'
2 ' b_base_ ab ' inlA_far_ 3
41
in jpp, this can be
2 ( b_base_ ab inlC.: far) 3
________________________________
From: Henry Rich <[email protected]>
To: [email protected]
Sent: Tuesday, April 4, 2017 8:12 PM
Subject: Re: [Jprogramming] locales with adverbs and conjunctions?
I have been thinking about this & I don't see a better solution than
Raul's. @Raul: think about putting something in NuVoc explaining this.
I thought at first: should the anonymous verb created by
verb adv_locale_
automatically be executed in (locale)? That would solve the immediate
problem.
But it leaves us with the responsibility of defining a locale for every
anonymous verb. What locale should we assign to:
(V0 V1_locale_ V2)
(V0_locale0_ V1_locale1_ V2_locale2_)
(V0_locale0_ V1)
?
I haven't been able to come up with something I would be willing to
suggest to Roger & Ken.
Unless someone does, I guess we will leave it as is. The locale suffix
gives an easy way to specify the locale of a verb - 98% of the cases -
and for the rest you need Raul's Device.
Henry Rich
On 4/4/2017 4:03 AM, Raul Miller wrote:
> I am not sure how to test this (I do not know what values to use for f
> a and b in 'f qromb a b' and do not feel like studying your code
> enough to deduce such values), but I think this is what you are asking
> for:
>
> ---------- 8< ------ cut here ------ 8< ----------
>
> coclass'nr'
>
> qromb=:1 :0
> qromb_implementation (coname '')
> )
>
> qromb_implementation=:2 :0
> NB.Returns the integral of the function from a to b. NR P.166 Ch.4.3
> NB.Uses Romberg's method of order 2*K, where, e.g. K=2 is Simpson's rule.
> NB.u function
> NB.y a,b,eps integration bounds(a,b), and accuracy(eps,
> default 1e_10)
> NB.eps is the fraction error from extrapolation error estimate
> NB.PolyInterpX stores successive trapezoidal relative stepsizes
> NB.PolyInterpY stores their approximations
> NB.K is the number of points used in the extrapolation
> cocurrent v
> ab=.2{.y [ eps=.2{y,1e_10
> PolyInterpY=:20#0 [ PolyInterpX=:21#0 [ PolyInterpM=:K=.5
> PolyInterpX=:PolyInterpX 0}~1
> TrapzdNextN=:0
> j=.1 while.j<:#PolyInterpX do.
> PolyInterpY=:PolyInterpY(j-1)}~u trapzdNext ab
> if.j>:K do.'ss dy'=.0 polyInterpRawinterp j-K
> if.(|dy)<:eps*|ss do.ss return.end.end.
> NB.This is key. The factor 0.25 allows h^2 extrapolation. See NR
> equation 4.2.1.
> PolyInterpX=:PolyInterpX j}~0.25*PolyInterpX{~j-1
> j=.>:j end.
> 'Too many steps in routine qromb'assert 0
> )
>
> polyInterpRawinterp=:4 :0
> NB.Polynomial interpolation. NR P.119 Ch.3.2
> NB.x the point of interpolation
> NB.y j subrange j+i.PolyInterpM is used for the interpolation
> NB.Must initialize
> NB.PolyInterpM=:5
> NB.PolyInterpX=:21#0
> NB.PolyInterpY=:20#0
> j=.y
> dif=.|x-j{PolyInterpX
> i=.0 while.i<PolyInterpM do.
> if.dif>dift=.|x-PolyInterpX{~j+i do.ns=.i [ dif=.dift end.
> i=.>:i end.
> d=.c=.PolyInterpY ];.0~ j,:PolyInterpM
> ns=.<:ns [ y=.PolyInterpY{~j+ns
> m=.1 while.m<PolyInterpM do.
> i=.0 while.i<PolyInterpM-m do.
> ho=.x-~PolyInterpX{~j+i
> hp=.x-~PolyInterpX{~j+i+m
> w=.(c{~i+1)-i{d
> 'PolyInterp error'assert 0~:den=.ho-hp
> den=.w%den
> d=.d i}~hp*den
> c=.c i}~ho*den
> i=.>:i end.
> if.(PolyInterpM-m)>2*ns+1 do.dy=.c{~ns+1
> else.ns=.<:ns [ dy=.ns{d
> end.
> y=.y+dy
> m=.>:m end.
> y,dy
> )
>
> trapzdNext=:1 :0
> trapzdNext_implementation (coname '')
> )
>
> trapzdNext_implementation=:2 :0
> NB.Returns the nth stage of refinement of the extended trapezoidal
> rule. NR P.163 Ch.4.2
> NB.u function must accept list
> NB.y a,b range
> NB.Must initialize TrapzdNextN=:0 before using.
> cocurrent v
> ba=.-~/y
> TrapzdNextN=:>:TrapzdNextN
> if.1=TrapzdNextN do.TrapzdNextS=:-:ba*+/u y return.
>
> else.TrapzdNextS=:-:TrapzdNextS+ba*t%~+/u({.y)+(0.5+i.t)*ba%t=.2^TrapzdNextN-2
> return.
> end.
> )
>
> ---------- 8< ------ cut here ------ 8< ----------
>
> This is a rather bulky example, if there are problems with this
> approach it might be better to define a more concise (and complete -
> with a test case which illustrates the problem) example?
>
> Thanks,
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm