Depends on the text?

But I don't think we have a full collection of partition routines to
adequately address the various partitioning concepts ennumerated in
the book linked from
http://jsoftware.com/pipermail/programming/2017-October/049377.html

Thanks,

-- 
Raul


On Tue, Nov 7, 2017 at 7:43 AM, Erling Hellenäs
<[email protected]> wrote:
> Hi all!
>
> If we want to include parRuskeyE in a text about set partitions, we could
> use this definition:
>
> SetPartitionsGenerateF =: 4 : 0
> NB. Generate all set partitions with k subsets from
> NB. an original set with n unique items.
> NB. x - number of subsets
> NB. y - number of items in the set to partition
> NB. Result - table of integers
> NB. -each row is a generated set partition
> NB. -columns contain the subset number of the items
> NB.  with the corresponding position in the set to
> NB.  partition.
> NB. Algorithm from Frank Ruskey: Combinatorial Generation
> NB. Working Version (1j-CSC 425/520).
> (,: i.y) SPGF (x-1);y-1
> )
>
> SPGF =: 4 : 0
> 'k n' =. y
> r=. (0,_1{.$x)$0
> if. k=n do.
>   r=.x
> else.
>   s=.n {."1 x
>   e=.(n+1)}."1 x
>   a=.,/s ( [,"1 1 (i.k+1),"0 1 ])"1 e
>   r=.r, a SPGF k;n-1
>   if. k > 0 do.
>     a=.s,.k,.e
>     r=.r, a SPGF (k-1);n-1
>   end.
> end.
> r
> )
>
> It could possibly be included in this page:
> https://en.wikipedia.org/wiki/Partition_of_a_set
>
> I could include it with some minimal text.
>
> Opinions?
>
> Cheers,
>
> Erling Hellenäs
>
>
>
> Den 2017-11-07 kl. 11:50, skrev Erling Hellenäs:
>>
>> Hi all!
>>
>> I created a program for enumeration of multiset permutations. It could
>> possibly be used to answer the Quora question.
>>
>> Comments are welcome.
>>
>>    Display=: 4 : ' x { ~. y'
>>
>>    N=: ,2 1
>>    y=: ,6 6 7
>>    MultisetPermutationsEnumerate N
>> 0 0 1
>> 0 1 0
>> 1 0 0
>>    (MultisetPermutationsEnumerate N )Display y
>> 6 6 7
>> 6 7 6
>> 7 6 6
>>
>> ------Project------------
>>
>> MultisetPermutationsEnumerate =: 3 : 0
>> NB. Enumerate multiset or bag permutations.
>> NB. y - vector with number of repetitions.
>> NB. Result - table of permutations - indexes in the nub
>> NB. of the multiset.
>> NB. Algorithm from Frank Ruskey: Combinatorial Generation
>> NB. Working Version (1j-CSC 425/520).
>> p=.(+/y)#0
>> 'r p N'=. (p;y) MPERec <:#p
>> |."1 r
>> )
>>
>> MPERec =: 4 : 0
>> 'p N'=.x
>> if. (0{N) = >:y do.
>>   r=.,:p
>> else.
>>   r=. (0,#p)$0
>>   for_j. (N>0)#i.#N do.
>>     p=. j y } p
>>     N=. (<:j{N) j } N
>>     't p N'=. (p;N) MPERec <:y
>>     r=.r,t
>>     N=. (>:j{N) j } N
>>     p=.0 y }p
>>   end.
>> end.
>> r;p;N
>> )
>>
>> Display=: 4 : ' x { ~. y'
>>
>> log=: ,.<i.0
>> N=: ,1
>> y=: ,6
>> MultisetPermutationsEnumerate N
>> (MultisetPermutationsEnumerate N )Display y
>> log=: ,.<i.0
>> N=: ,1 1
>> y=: ,6 7
>> MultisetPermutationsEnumerate N
>> ( MultisetPermutationsEnumerate N )Display y
>> N=: ,2 1
>> y=: ,6 6 7
>> MultisetPermutationsEnumerate N
>> (MultisetPermutationsEnumerate N )Display y
>> N=: ,2 1 1
>> y=: ,6 6 7 8
>> MultisetPermutationsEnumerate N
>> (MultisetPermutationsEnumerate N )Display y
>> N=: ,1 2 1
>> y=: ,7 6 6 8
>> MultisetPermutationsEnumerate N
>> (MultisetPermutationsEnumerate N )Display y
>>
>> ---Output----
>>
>>    log=: ,.<i.0
>>    N=: ,1
>>    y=: ,6
>>    MultisetPermutationsEnumerate N
>> 0
>>    (MultisetPermutationsEnumerate N )Display y
>> 6
>>    log=: ,.<i.0
>>    N=: ,1 1
>>    y=: ,6 7
>>    MultisetPermutationsEnumerate N
>> 0 1
>> 1 0
>>    ( MultisetPermutationsEnumerate N )Display y
>> 6 7
>> 7 6
>>    N=: ,2 1
>>    y=: ,6 6 7
>>    MultisetPermutationsEnumerate N
>> 0 0 1
>> 0 1 0
>> 1 0 0
>>    (MultisetPermutationsEnumerate N )Display y
>> 6 6 7
>> 6 7 6
>> 7 6 6
>>    N=: ,2 1 1
>>    y=: ,6 6 7 8
>>    MultisetPermutationsEnumerate N
>> 0 0 1 2
>> 0 0 2 1
>> 0 1 0 2
>> 0 1 2 0
>> 0 2 0 1
>> 0 2 1 0
>> 1 0 0 2
>> 1 0 2 0
>> 1 2 0 0
>> 2 0 0 1
>> 2 0 1 0
>> 2 1 0 0
>>    (MultisetPermutationsEnumerate N )Display y
>> 6 6 7 8
>> 6 6 8 7
>> 6 7 6 8
>> 6 7 8 6
>> 6 8 6 7
>> 6 8 7 6
>> 7 6 6 8
>> 7 6 8 6
>> 7 8 6 6
>> 8 6 6 7
>> 8 6 7 6
>> 8 7 6 6
>>    N=: ,1 2 1
>>    y=: ,7 6 6 8
>>    MultisetPermutationsEnumerate N
>> 0 1 1 2
>> 0 1 2 1
>> 0 2 1 1
>> 1 0 1 2
>> 1 0 2 1
>> 1 1 0 2
>> 1 1 2 0
>> 1 2 0 1
>> 1 2 1 0
>> 2 0 1 1
>> 2 1 0 1
>> 2 1 1 0
>>    (MultisetPermutationsEnumerate N )Display y
>> 7 6 6 8
>> 7 6 8 6
>> 7 8 6 6
>> 6 7 6 8
>> 6 7 8 6
>> 6 6 7 8
>> 6 6 8 7
>> 6 8 7 6
>> 6 8 6 7
>> 8 7 6 6
>> 8 6 7 6
>> 8 6 6 7
>>
>> Cheers,
>>
>> Erling Hellenäs
>>
>>
>>
>> Den 2017-11-06 kl. 14:21, skrev Erling Hellenäs:
>>>
>>> Hi all!
>>>
>>> Do we have a program or built-in  function to enumerate the permutations
>>> of multisets, sets with item repetitions?
>>>
>>> Cheers,
>>>
>>> Erling Hellenäs
>>>
>>>
>>> Den 2017-11-06 kl. 10:37, skrev Linda Alvord:
>>>>
>>>>   This is handier when there are more sets of repetions.
>>>>
>>>>   (!6)%(!2)*!2
>>>> 180
>>>>     /
>>>>     (!6)%*/!2 2
>>>> 180
>>>>
>>>> Linda
>>>>
>>>> -----Original Message-----
>>>> From: Programming [mailto:[email protected]] On
>>>> Behalf Of Erling Hellenäs
>>>> Sent: Sunday, November 5, 2017 11:28 AM
>>>> To: [email protected]
>>>> Subject: Re: [Jprogramming] Partitions
>>>>
>>>> Hi all!
>>>>
>>>> Even though this solution is only relevant as an answer to the Quora
>>>> question, I want to post a correction.
>>>> Since there can be duplicates in the root sets, there is not always !n
>>>> permutations.
>>>> The formula is here:
>>>> https://brilliant.org/wiki/permutations-with-repetition/
>>>> The corrected list:
>>>>
>>>> list=:4 : 0
>>>> v=.((x-1)#1),q: y
>>>> r1=.x parRuskeyE #v
>>>> r2=. >r1 (*/)@:{&.>"1 0 < v
>>>> r3=./:~"1 r2
>>>> r4=. ~.r3
>>>> perm=.3 : '(!#y)%*/!+/y=/~.y'
>>>> r5=.perm"1 r4
>>>> +/r5
>>>> )
>>>>
>>>> Test output:
>>>>
>>>>      v=: ((x-1)#1),q:u=:2*2*3*3
>>>>      r1=:3 parRuskeyE #v
>>>>      r2=: >r1 (*/)@:{&.>"1 0 < v
>>>>      r3=:/:~"1 r2
>>>>      [r4=: ~.r3
>>>> 1 2 18
>>>> 2 2  9
>>>> 1 4  9
>>>> 2 3  6
>>>> 3 3  4
>>>> 1 6  6
>>>> 1 3 12
>>>> 1 1 36
>>>>      *./u =*/"1 r4
>>>> 1
>>>>      perm=: 3 : '(!#y)%*/!+/y=/~.y'
>>>>      [r5=:perm"1 r4
>>>> 6 3 6 6 3 3 6 3
>>>>      [+/r5
>>>> 36
>>>>
>>>>      3 list 2*2*3*3
>>>> 36
>>>>
>>>>      perm 1 2 3 3
>>>> 12
>>>>      (!4)%!2
>>>> 12
>>>>      perm 1 2 3 3 5 5
>>>> 180
>>>>      (!6)%(!2)*!2
>>>> 180
>>>>
>>>> Cheers,
>>>>
>>>> Erling Hellenäs
>>>>
>>>>
>>>>
>>>> On 2017-11-03 18:24, Erling Hellenäs wrote:
>>>>>
>>>>> Hi all!
>>>>>
>>>>> list=:4 : 0
>>>>> v=.((x-1)#1),q: y
>>>>> r1=.x parRuskeyE #v
>>>>> r2=. >r1 (*/)@:{&.>"1 0 < v
>>>>> r3=./:~"1 r2
>>>>> r4=. ~.r3
>>>>> (!x)*#r4
>>>>> )
>>>>>
>>>>>     3 list 24
>>>>> 36
>>>>>
>>>>> Cheers,
>>>>> Erling Hellenäs
>>>>>
>>>>> On 2017-11-03 17:36, Erling Hellenäs wrote:
>>>>>>
>>>>>> Hi all  !
>>>>>>
>>>>>> Below is the output of the run on the Quora question.
>>>>>>
>>>>>> Maybe someone can see if there is a problem.
>>>>>>
>>>>>> Cheers,
>>>>>>
>>>>>> Erling Hellenäs
>>>>>>
>>>>>>     [v=: 1 1 ,q:24
>>>>>> 1 1 2 2 2 3
>>>>>>     [r=:3 parRuskeyE #v
>>>>>> ┌───────┬───────┬───────┐
>>>>>> │0 3 4 5│1      │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4 5  │1 3    │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4 5  │1      │2 3    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3 5  │1 4    │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1 3 4  │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1 4    │2 3    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3 5  │1      │2 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1 3    │2 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1      │2 3 4  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3 4  │1 5    │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1 3 5  │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1 5    │2 3    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1 4 5  │2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 3 4 5│2      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 4 5  │2 3    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1 5    │2 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 3 5  │2 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 5    │2 3 4  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3 4  │1      │2 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1 3    │2 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1      │2 3 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1 4    │2 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 3 4  │2 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 4    │2 3 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1      │2 4 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 3    │2 4 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1      │2 3 4 5│
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 4 5│1      │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4 5  │1 2    │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 5  │1 4    │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1 2 4  │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 5  │1      │3 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1 2    │3 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 4  │1 5    │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1 2 5  │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1 4 5  │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2 4 5│3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1 5    │3 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2 5  │3 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 4  │1      │3 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1 2    │3 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1 4    │3 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2 4  │3 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1      │3 4 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2    │3 4 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 4 5│2      │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 5  │2 4    │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 5  │2      │3 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 4  │2 5    │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2 4 5  │3      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2 5    │3 4    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 4  │2      │3 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2 4    │3 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2      │3 4 5  │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 3 5│1      │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3 5  │1 2    │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 5  │1 3    │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 5    │1 2 3  │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 3  │1 5    │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1 2 5  │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1 3 5  │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2 3 5│4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 3  │1      │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1 2    │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1 3    │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2 3  │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 3 5│2      │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 5  │2 3    │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 3  │2 5    │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2 3 5  │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 3  │2      │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2 3    │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 2 5│3      │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 2  │3 5    │4      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 2  │3      │4 5    │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 3 4│1      │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3 4  │1 2    │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 4  │1 3    │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 4    │1 2 3  │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2 3  │1 4    │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 3    │1 2 4  │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 2    │1 3 4  │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0      │1 2 3 4│5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 3 4│2      │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 4  │2 3    │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 3  │2 4    │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1    │2 3 4  │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 2 4│3      │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 2  │3 4    │5      │
>>>>>> ├───────┼───────┼───────┤
>>>>>> │0 1 2 3│4      │5      │
>>>>>> └───────┴───────┴───────┘
>>>>>>     [r2=: >r (*/)@:{&.>"1 0 < v
>>>>>> 12  1  2
>>>>>>   6  2  2
>>>>>>   6  1  4
>>>>>>   6  2  2
>>>>>>   3  4  2
>>>>>>   3  2  4
>>>>>>   6  1  4
>>>>>>   3  2  4
>>>>>>   3  1  8
>>>>>>   4  3  2
>>>>>>   2  6  2
>>>>>>   2  3  4
>>>>>>   2  6  2
>>>>>>   1 12  2
>>>>>>   1  6  4
>>>>>>   2  3  4
>>>>>>   1  6  4
>>>>>>   1  3  8
>>>>>>   4  1  6
>>>>>>   2  2  6
>>>>>>   2  1 12
>>>>>>   2  2  6
>>>>>>   1  4  6
>>>>>>   1  2 12
>>>>>>   2  1 12
>>>>>>   1  2 12
>>>>>>   1  1 24
>>>>>> 12  1  2
>>>>>>   6  2  2
>>>>>>   6  2  2
>>>>>>   3  4  2
>>>>>>   6  1  4
>>>>>>   3  2  4
>>>>>>   4  3  2
>>>>>>   2  6  2
>>>>>>   2  6  2
>>>>>>   1 12  2
>>>>>>   2  3  4
>>>>>>   1  6  4
>>>>>>   4  1  6
>>>>>>   2  2  6
>>>>>>   2  2  6
>>>>>>   1  4  6
>>>>>>   2  1 12
>>>>>>   1  2 12
>>>>>>   6  2  2
>>>>>>   3  4  2
>>>>>>   3  2  4
>>>>>>   2  6  2
>>>>>>   1 12  2
>>>>>>   1  6  4
>>>>>>   2  2  6
>>>>>>   1  4  6
>>>>>>   1  2 12
>>>>>> 12  1  2
>>>>>>   6  2  2
>>>>>>   6  2  2
>>>>>>   3  4  2
>>>>>>   4  3  2
>>>>>>   2  6  2
>>>>>>   2  6  2
>>>>>>   1 12  2
>>>>>>   4  1  6
>>>>>>   2  2  6
>>>>>>   2  2  6
>>>>>>   1  4  6
>>>>>>   6  2  2
>>>>>>   3  4  2
>>>>>>   2  6  2
>>>>>>   1 12  2
>>>>>>   2  2  6
>>>>>>   1  4  6
>>>>>>   6  2  2
>>>>>>   2  6  2
>>>>>>   2  2  6
>>>>>>   8  1  3
>>>>>>   4  2  3
>>>>>>   4  2  3
>>>>>>   2  4  3
>>>>>>   4  2  3
>>>>>>   2  4  3
>>>>>>   2  4  3
>>>>>>   1  8  3
>>>>>>   4  2  3
>>>>>>   2  4  3
>>>>>>   2  4  3
>>>>>>   1  8  3
>>>>>>   4  2  3
>>>>>>   2  4  3
>>>>>>   4  2  3
>>>>>>     [r3=:/:~"1 r2
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 1 4  6
>>>>>> 2 3  4
>>>>>> 1 3  8
>>>>>> 2 3  4
>>>>>> 2 2  6
>>>>>> 2 3  4
>>>>>> 2 2  6
>>>>>> 1 2 12
>>>>>> 1 4  6
>>>>>> 2 3  4
>>>>>> 1 4  6
>>>>>> 1 3  8
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 1 2 12
>>>>>> 1 2 12
>>>>>> 1 2 12
>>>>>> 1 1 24
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 2 3  4
>>>>>> 1 4  6
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 1 2 12
>>>>>> 2 3  4
>>>>>> 1 4  6
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 1 2 12
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 2  6
>>>>>> 1 2 12
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 1 2 12
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 1 2 12
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 2 3  4
>>>>>> 2 2  6
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 2 2  6
>>>>>> 1 3  8
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 1 3  8
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 1 3  8
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>> 2 3  4
>>>>>>     [r4=: ~.r3
>>>>>> 1 2 12
>>>>>> 2 2  6
>>>>>> 1 4  6
>>>>>> 2 3  4
>>>>>> 1 3  8
>>>>>> 1 1 24
>>>>>>     *./24 =*/"1 r4
>>>>>> 1
>>>>>>     NB. All permutations
>>>>>>     (!3)*#r5
>>>>>> 312
>>>>>> ---------------------------------------------------------------------
>>>>>> - For information about J forums see
>>>>>> http://www.jsoftware.com/forums.htm
>>>>>
>>>>>
>>>>> ----------------------------------------------------------------------
>>>>> For information about J forums see http://www.jsoftware.com/forums.htm
>>>>
>>>>
>>>> ----------------------------------------------------------------------
>>>> For information about J forums see http://www.jsoftware.com/forums.htm
>>>> ----------------------------------------------------------------------
>>>> For information about J forums see http://www.jsoftware.com/forums.htm
>>>
>>>
>>> ----------------------------------------------------------------------
>>> For information about J forums see http://www.jsoftware.com/forums.htm
>>
>>
>> ----------------------------------------------------------------------
>> For information about J forums see http://www.jsoftware.com/forums.htm
>
>
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to