HI,

I have been thinking about Brian's "cancellation" approach and maybe we can
sort of formalize it.

Associative relations for cancelling paths:

0 = N + S = S + N
0 = NE + SW = SW + NE
0 = NW + SE = SE + NW

Associative relations for simplifying paths:

N = NE + NW = NW + NE
S = SE + SW = SE + SW
NE = N + SE = SE + N
NW = N + SW = SW + N
SE = S + NE = NE + S
SW = S + NW = NW + S

Please note that destinations are equivalent but the paths are different.

Now we can do symbolic algebraic simplification.

For example :

┌──┬──┬─┬──┬──┬──┬──┬─┬──┬──┐
│SE│NE│N│NW│NW│NE│NE│S│SW│SW│
└──┴──┴─┴──┴──┴──┴──┴─┴──┴──┘

N = NW + NE and SE = NE + S
┌──┬──┬─┬──┬──┬──┬──┬─┬──┬──┐
│SE│NE│N│NW│N │  │SE│ │SW│SW│
└──┴──┴─┴──┴──┴──┴──┴─┴──┴──┘

S = SE + SW
┌──┬──┬─┬──┬──┬──┬──┬─┬──┬──┐
│SE│NE│N│NW│N │  │S │ │  │SW│
└──┴──┴─┴──┴──┴──┴──┴─┴──┴──┘

0 = N + S
┌──┬──┬─┬──┬──┬──┬──┬─┬──┬──┐
│SE│NE│N│NW│  │  │  │ │  │SW│
└──┴──┴─┴──┴──┴──┴──┴─┴──┴──┘

0 = SE + NW
┌──┬──┬─┬──┬──┬──┬──┬─┬──┬──┐
│  │NE│N│  │  │  │  │ │  │SW│
└──┴──┴─┴──┴──┴──┴──┴─┴──┴──┘

0 = NE + SW
┌──┬──┬─┬──┬──┬──┬──┬─┬──┬──┐
│  │  │N│  │  │  │  │ │  │  │
└──┴──┴─┴──┴──┴──┴──┴─┴──┴──┘

The count of remaining symbols is the distance in number of steps.

Programming this is left as an exercise to the reader.


On Tue, Dec 12, 2017 at 3:08 PM, Brian Schott <[email protected]>
wrote:

> No. That's not right. I need to repair my approach.
>
> On Tue, Dec 12, 2017 at 2:04 PM, Brian Schott <[email protected]>
> wrote:
>
> > Another way to approach this problem first part, which was refined by
> > Jimmy's
> > elegant solution, follows.
> >
> >
> >
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to