Hi,
I get the following result for the size of bounded areas with point 46
attaining 3980 :
0 3 4 6 8 14 20 22 23
1899 2320 1627 1382 2266 2293 1312 1259 1599
24 27 28 29 30 31 32 33 36
2207 2891 1479 2111 1667 1339 1323 3198 1600
38 40 42 43 44 46 47 48 49
1849 1482 1331 1507 2235 3890 2179 2125 1889
NB. d6c : input coordinates
d6c =: data6a
NB. d6t : transpose coordinates to start at 1,1
d6t =: d6c-"1 (<./d6c)-1
NB. region size
(<./,>./)d6t
NB. coordinates of all points in region
coor =: 1+(315 316)#:i.315*316
NB. d6d : Distances between input points and all points in region
d6d =: +/"1|d6t-"1"1 2 coor
NB. d6dm : points equal to minimum distance
d6dm =: (<./d6d) =("1) d6d
NB. non-infinite points
d6ni =: I. -. +./"1 (1=+/d6dm)#"1 d6dm
NB. d6a : size of areas for each input coordinate excluding equidistant
points
d6a =: +/"1 (1=+/d6dm)#"1 d6dm
NB. size of bounded areas
d6ni { d6a
On Mon, Dec 10, 2018 at 6:33 PM 'Mike Day' via Programming <
[email protected]> wrote:
>
> I also get 3890 on “data6a”, as it appears listed in the message, below.
> Here’s a list of all 27 non-infinite areas, though in a different order,
probably because I worked on the transposed example in order to reproduce
the regions shown in the example.
>
> 3 by 9 to avoid line-wrapping:
> 1899 2320 1627 1382 2266 2293 1312 1259 1599
> 2207 2891 1479 2111 1667 1339 1323 3198 1600
> 1849 1482 1331 1507 2235 3890 2179 2125 1889
>
> Cheers,
>
> Mike
>
> Please reply to [email protected].
> Sent from my iPad
>
> > On 10 Dec 2018, at 19:42, Brian Schott <[email protected]> wrote:
> >
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm