See also http://code.jsoftware.com/wiki/Essays/Fibonacci_Sums

On Thu, Jul 18, 2019 at 7:57 AM 'Mike Day' via Programming <
[email protected]> wrote:

> FWIW,  I spent some time on Zeckendorf representation a year or so ago.
> There’s some Rossetti Code stuff on it. I didn’t get round to sharing my
> results,  but could do so privately or on the forum if there’s interest.  I
> worked up functions for various arithmetic compositions, including harder
> ones like division, power, and so on.
>
> Cheers,
>
> Mike
>
>
> Sent from my iPad
>
> > On 18 Jul 2019, at 15:46, 'Jon Hough' via Programming <
> [email protected]> wrote:
> >
> > Positive integers can be encoded using Fibonacci numbers.
> > For the sake of easer, assume Fibonacci numbers are 1,2,3,5,... (only
> one 1).
> > We can encode a positive integer uniquely using non-consecutive
> Fibonacci numbers. For example
> >
> > 4 = 1 + 3 (note: 1 and 3 a re non-consecutive)
> > 5 = 5 (already a Fib number)
> > 6 = 1 + 5
> > 7 = 2 + 5
> > 8 = 8
> >
> > These representation can be encoded using bits. 1's where a Fibonacci
> number is in the representation, 0s when not.
> > 4 = 1 + 3 = 101
> > 5 = 0001
> > 6 = 1001
> > 7 = 0101
> > 8 = 00001
> > ...
> >
> > We can append a 1 on the end of the encoding a a delimiter, so that
> during decoding we know easily where to stop. This way integers can be
> packed together.
> >
> > Here are some J verbs for encoding and decoding positive integers.
> >
> >
> > NB. ===================================================================
> > genfibs=: 3 : 0
> > r=. 1 2
> > i1=. 1
> > i2=. 2
> > c=. 2
> > while. y > c=. c+1 do.
> >  t=. i1 + i2
> >  i1=. i2
> >  i2=. t
> >  r=. r, x: t
> > end.
> > )
> >
> >
> > Fibs=: genfibs 1400
> >
> > encode=: 3 : 0
> > d=. > (>@:,&:>)/ (<@encode1)"0 y
> > r=. d,'0' #~ (#d) -~ 8 * >. 8 %~ # d
> > pack r
> > )
> >
> > encode1=: 3 : 0
> > n=. x: y
> > r=. ''
> > k=: ''
> > fl=. x: Fibs{~ I. Fibs <: y
> > i=. <:#fl
> > while. n do.
> >  r=. r,'1'
> >  n=. n- i{fl
> >  k=: k,i{fl
> >  i=. i-1
> >  while. (i >: 0) *. (n<i{fl) do.
> >    r=. r,'0'
> >    i=. i-1
> >  end.
> > end.
> > (|.r),'1'
> > )
> >
> >
> >
> > pack=: 3 : 0
> > a.{~ #. _8 ] \"."0 y
> > )
> >
> > decode=: 3 : 0
> > i=. , {:|."1 (8 # 2) ,:|."1 #: a.i. y
> > n=. ''
> > while. 1 e. 1 1 E. i do.
> >  idx=. {. I. 1 1 E. i
> >  n=. n, +/ Fibs {~ I. i {~ i. >: idx
> >  i=. (2+idx) }. i
> > end.
> > n
> > )
> >
> > NB. ===================================================================
> >
> > The encode verb outputs the Fib-representation as bytes.
> > encode 4
> > �
> >
> > #: a.i. encode 4
> > 1 0 1 1 0 0 0 0
> >
> >
> > decode encode 449239438124834384923493383837734733747181x
> > 449239438124834384923493383837734733747181
> >
> >
> > decode encode 1 2 3 4 5 6 7
> > 1 2 3 4 5 6 7
> >
> > Fibonacci encoding is not really a good compression encoding, but has
> some good error handling properties.
> > I am not happy with the decode verb, as I wanted to write it without a
> while loop. Difficult though as there are some
> > awkaward consecutive bits that might appear in the encoding, e.g.
> > ...0 1 1 1 0...
> > Using 1 1 E. with this breaks decoding unless done carefully. Easier
> just to use a while loop and eat the input every iteration.
> >
> > refs: https://en.wikipedia.org/wiki/Fibonacci_coding
> > https://en.wikipedia.org/wiki/Zeckendorf%27s_theorem
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
>
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to