If I remember correctly you should deflate the original equation by dividing it by x-x1 where x1 is the first root found in order to find x2 the second root.
Esa Sent from my Samsung Galaxy smartphone. -------- Original message -------- From: Skip Cave <s...@caveconsulting.com> Date: 2/5/20 21:49 (GMT+02:00) To: "programm...@jsoftware.com" <programm...@jsoftware.com> Subject: Re: [Jprogramming] Derivatives Won't (x^x)-(2*x) = 0 have two roots? A real one, and a complex one? Will Newton Raphson find both? Skip On Wed, Feb 5, 2020 at 12:08 PM Henry Rich <henryhr...@gmail.com> wrote: > Yeah, a rational y wouldn't ever quite satisfy 0 = _2 0 1 p. y > > Henry Rich > > On 2/5/2020 1:04 PM, Devon McCormick wrote: > > You especially need guardrails if you try something like this: > > _2 0 1&p. Newton 1 NB. OK - square root of 2 > > 1.41421 > > _2 0 1&p. Newton 1x NB. Try extended precision > > C-c C-c|break NB. After waiting a while... > > | _2 0 1&p.Newton 1 > > NB. Failure to terminate... > > > > > > On Wed, Feb 5, 2020 at 7:34 AM Henry Rich <henryhr...@gmail.com> wrote: > > > >> I misread your function. > >> > >> (^~ - +:) Newton 1.1 > >> 0.346323j1.2326e_32 > >> (^~ - +:) Newton 0.5 > >> 0.346323 > >> > >> Still need those guardrails! > >> > >> Henry Rich > >> > >> On 2/5/2020 2:21 AM, Skip Cave wrote: > >>> In "Fifty Shades of J" chapter 23, the Newton Raphson algorithm is > >>> described thusly: > >>> > >>> Newton =: adverb : ']-u%(u D.1)'(^:_)("0) > >>> > >>> How would that be defined using the new derivative verbs? > >>> > >>> Also, what is the replacement for d.? > >>> > >>> How would I find the roots of (x^x)=2*x using Newton Raphson? > >>> > >>> Skip > >>> > >>> Skip Cave > >>> Cave Consulting LLC > >>> ---------------------------------------------------------------------- > >>> For information about J forums see > >>> https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jsoftware.com%2Fforums.htm&data=01%7C01%7C%7Cf73805d19a944a8ea1e608d7aa747a61%7C5090e269dbea4e98a9aa3e70be5890f7%7C0&sdata=LCHRYwGvI5EXRoKUQbKA%2BWG8v1vyKu9MDopz6xEBcSE%3D&reserved=0 > >> ---------------------------------------------------------------------- > >> For information about J forums see > >> https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jsoftware.com%2Fforums.htm&data=01%7C01%7C%7Cf73805d19a944a8ea1e608d7aa747a61%7C5090e269dbea4e98a9aa3e70be5890f7%7C0&sdata=LCHRYwGvI5EXRoKUQbKA%2BWG8v1vyKu9MDopz6xEBcSE%3D&reserved=0 > >> > > > > ---------------------------------------------------------------------- > For information about J forums see > https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jsoftware.com%2Fforums.htm&data=01%7C01%7C%7Cf73805d19a944a8ea1e608d7aa747a61%7C5090e269dbea4e98a9aa3e70be5890f7%7C0&sdata=LCHRYwGvI5EXRoKUQbKA%2BWG8v1vyKu9MDopz6xEBcSE%3D&reserved=0 > ---------------------------------------------------------------------- For information about J forums see https://eur01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jsoftware.com%2Fforums.htm&data=01%7C01%7C%7Cf73805d19a944a8ea1e608d7aa747a61%7C5090e269dbea4e98a9aa3e70be5890f7%7C0&sdata=LCHRYwGvI5EXRoKUQbKA%2BWG8v1vyKu9MDopz6xEBcSE%3D&reserved=0 T?m?n viestin sis?lt? liitteineen on luottamuksellinen ja tarkoitettu vain sen vastaanottajalle. Jos et ole viestin tarkoitettu vastaanottaja, pyyd?mme sinua poistamaan viestin liitteineen ja sen j?lkeen ilmoittamaan asiasta v?litt?m?sti viestin l?hett?j?lle. Viestin sis?ll?n paljastaminen, kopioiminen tai muu k?ytt? on kielletty. The contents of this message and any attachments are confidential and meant solely for the intended recipient. If you are not the intended recipient, we kindly ask that you delete the message and its attachments, and immediately notify the sender of the email. Disclosing, copying or using the contents of the message is strictly prohibited. ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm