yes, or as a verb

6 (4 $. $.@:=) i.4 3

2 0






On Friday, November 13, 2020, 01:04:39 p.m. EST, Ric Sherlock 
<[email protected]> wrote: 





How about

  4 $. $. 6=M

1 1

On Sat, 14 Nov 2020, 06:54 Hauke Rehr, <[email protected]> wrote:

> plus, Henry’s solution looks more idiomatic (too me, at least)
>
> usually, I try to keep related structures aligned (using grade)
> other than that, I hardly remember any cases when linear indexing
> didn’t do the job, maybe after some reduction
>
> so I think in most cases this should not be needed
> but if so, I’d take Henry’s approach
>
> Am 13.11.20 um 18:40 schrieb 'robert therriault' via Programming:
> > Having seen Henry's solution, I see that I have left the job half done,
> so here is the rest of my solution.
> >
> >    dyadind =. ;@:(= #"1 {@({@i."0 @$@]))
> >    6 dyadind i. 3 4
> > 1 2
> >
> > Having produced that, I note that Henry's is twice as fast and takes up
> half the space and the differences become more apparent at higher
> dimensions.
> >
> >    1000 timespacex '6 dyadind i. 3 4'
> > 1.807e_6 4288
> >    1000 timespacex '6 ($@] #: I.@(= ,)) i. 3 4'
> > 8.68e_7 2496
> >    1000 timespacex '6 dyadind i. 2 3 3 4'
> > 5.283e_6 12992
> >    1000 timespacex '6 ($@] #: I.@(= ,)) i. 2 3 3 4'
> > 1.05e_6 3008
> >
> > Cheers, bob
> >
> >> On Nov 13, 2020, at 09:25, 'robert therriault' via Programming <
> [email protected]> wrote:
> >>
> >> Hi Thomas,
> >>
> >> I usually use something like this which relies on Category ({) to group
> the indices generated by i. applied to each index of the shape. I imagine
> others have different approaches.
> >>
> >>  i. 3 4
> >> 0 1  2  3
> >> 4 5  6  7
> >> 8 9 10 11
> >>  ind=.{@({@i."0 @$)
> >>  ind i. 3 4
> >> ┌───┬───┬───┬───┐
> >> │0 0│0 1│0 2│0 3│
> >> ├───┼───┼───┼───┤
> >> │1 0│1 1│1 2│1 3│
> >> ├───┼───┼───┼───┤
> >> │2 0│2 1│2 2│2 3│
> >> └───┴───┴───┴───┘
> >>  i. 2 3 4
> >> 0  1  2  3
> >> 4  5  6  7
> >> 8  9 10 11
> >>
> >> 12 13 14 15
> >> 16 17 18 19
> >> 20 21 22 23
> >>  ind i. 2 3 4
> >> ┌─────┬─────┬─────┬─────┐
> >> │0 0 0│0 0 1│0 0 2│0 0 3│
> >> ├─────┼─────┼─────┼─────┤
> >> │0 1 0│0 1 1│0 1 2│0 1 3│
> >> ├─────┼─────┼─────┼─────┤
> >> │0 2 0│0 2 1│0 2 2│0 2 3│
> >> └─────┴─────┴─────┴─────┘
> >>
> >> ┌─────┬─────┬─────┬─────┐
> >> │1 0 0│1 0 1│1 0 2│1 0 3│
> >> ├─────┼─────┼─────┼─────┤
> >> │1 1 0│1 1 1│1 1 2│1 1 3│
> >> ├─────┼─────┼─────┼─────┤
> >> │1 2 0│1 2 1│1 2 2│1 2 3│
> >> └─────┴─────┴─────┴─────┘
> >>
> >> Cheers, bob
> >>
> >>> On Nov 13, 2020, at 09:05, thomas.bulka via Programming <
> [email protected]> wrote:
> >>>
> >>> Hi everyone,
> >>>
> >>> still learning J, I stumbled across a problem which should be easy to
> solve, but somehow I have not been able to do so, yet. Say, I have defined
> a matrix M:
> >>>
> >>> M =: 3 4 $ >: i. 12
> >>>
> >>> I now want to get the row and column index of 6 in M, which is 1 2. If
> M was a vector, I could easily get the index of 6 with the help of I.:
> >>>
> >>> I. 6 = , M
> >>>
> >>> Applying I. to M in its original shape, however, returns a boolean
> vector which indicates in which rows 6 has been found (at least that is my
> interpretation).
> >>>
> >>> Is it possible to apply I. to higher rank arrays in order to receive
> the complete indices of the elements I'm looking for? Or should I approach
> that problem in another way?
> >>>
> >>> Thank you very much in advance for your help!
> >>>
> >>> Kind regards,
> >>>
> >>> Thomas
> >>>
> >>> ----------------------------------------------------------------------
> >>> For information about J forums see http://www.jsoftware.com/forums.htm
> >>
> >> ----------------------------------------------------------------------
> >> For information about J forums see http://www.jsoftware.com/forums.htm
> >
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> >
>
> --
> ----------------------
> mail written using NEO
> neo-layout.org

>
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to