Just to provide some context to Henry's statement that things have changed
a bit since J8.05, below are the timings I get on my phone (Pixel 4a) using
J902.

,.f"0]2^>:i.13
0.024127
    1e_5
    2e_6
    3e_6
  3.4e_5
0.000909
0.000425
0.012697
0.020461
0.139175
1.00075
  6.6658
56.7179



On Mon, 24 May 2021, 15:00 Henry Rich, <henryhr...@gmail.com> wrote:

> J8.05 is very out-of-date for +/ . * .  Since then I have rewritten the
> JE code a couple of times: the current version is pretty fast and has
> special code depending on matrix sizes.
>
> If you are doing performance measurement you need to get an up-to-date
> J.  Many primitives and combinations run 5-10x faster than they did in
> 8.05.
>
> Henry Rich
>
> On 5/23/2021 10:32 PM, Imre Patyi wrote:
> > Dear Programming in J,
> >
> > I made another test of numerical calculation in J,
> > this time looking at multiplying two matrices using
> > (+/ .*)  and here is what I have found.  It seems to
> > me that J with (+/ .*) has acceptable speed only for
> > matrices of order about 128 or below, after which order it
> > quickly falls behind other standard numerical software such
> > as python with numpy, and Octave.  I also wrote a naive C
> > program for matrix multiplication; for orders 256, 1024,
> > ..., 8192 J tracks as 2 to 4 faster than the naive C program
> > (which does not do SIMD or mind caching much).
> >
> > Numpy and Octave are able to use multiple threads and/or cores
> > just by calling ordinary 'matmul', and they are about 7 to
> > 25 times as fast as J in my experiment.  As a primitive in J
> > the command (+/ .*) could be just as fast as in any competent
> > numerical program available in C for matrix multiplication.
> > Even if you do not want multithreading in J, it seems to
> > me that (+/ .*) has roughly 1/4 or 1/8 the speed of what should
> > be possible for a single threaded program.  It seems especially
> > troubling that it becomes just as slow as a plain vanilla
> > naive C program for larger sizes of the matrices.  I am not sure
> > why J does not seem to use BLAS or LAPACK for matrix multiplication.
> >
> > Yours sincerely,
> > Imre Patyi
> >
> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> > Here is the summary of timings.
> >
> > n time, C time, J time, python time, Octave (time, J)/(time, C) (time,
> > J)/(time, python) (time, J)/(time, Octave)
> > 256 0.0780 0.0073 0.0010 0.0007 0.0936 7.3047 9.8987
> > 512 0.2680 0.0671 0.0100 0.0050 0.2505 6.7137 13.4195
> > 1024 1.8400 0.7293 0.0479 0.0380 0.3964 15.2255 19.1919
> > 2048 14.0430 6.0432 0.2663 0.2851 0.4303 22.6938 21.1960
> > 4096 109.8290 54.4634 2.2739 2.1620 0.4959 23.9513 25.1917
> > 8192 874.8430 435.2600 17.1282 17.2197 0.4975 25.4120 25.2769
> >
> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> > File: example-of-matmul.ijs
> >
> > f=: 3 : 0
> > N=.y
> > a=.2 o. ((4 : '(1234*x)+(5678*y)')"0 0)/~ (i.N)
> > NB.smoutput(i.5){(i.5){a
> > NB.smoutput''
> > t=.timex'b=:a(+/ .*)a'
> > NB.smoutput(i.5){(i.5){b
> > NB.t;(60 60#:t)
> > t
> > )
> >
> > NB. Sample run.
> > NB.   ,.f"0]2^>:i.13
> > NB. 0.0135541
> > NB.   3.5e_6
> > NB.   2.9e_6
> > NB.     4e_6
> > NB.  1.77e_5
> > NB. 0.0001052
> > NB. 0.0008633
> > NB. 0.0072972
> > NB. 0.0671373
> > NB. 0.729313
> > NB.  6.04315
> > NB.  54.4634
> > NB.   435.26
> >
> >
> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> > File: example-with-numpy.py
> >
> > import numpy, time
> > def f(n):
> >      i=numpy.array(numpy.arange(n).reshape((1,n)))
> >      a=numpy.cos(numpy.array(1234*i+5678*i.T))
> >      #print(a.shape)
> >      t0=time.time()
> >      b=numpy.matmul(a,a)
> >      return time.time()-t0
> >
> > for i in range(1,1+13):
> >      print(f(2**i))
> >
> >
> > r"""     Sample run.
> > C:>py "example-with-numpy.py"
> > 0.0020143985748291016
> > 0.0
> > 0.0
> > 0.0
> > 0.0
> > 0.0009746551513671875
> > 0.0
> > 0.0009989738464355469
> > 0.009999990463256836
> > 0.04790067672729492
> > 0.26629042625427246
> > 2.273921251296997
> > 17.128154277801514
> > """
> >
> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> > File:  The command I used in Octave.
> >
> >>> for n=2.^(1:13) ; i=(0:n-1) ; a=cos(1234*i'+5678*i) ; tic,b=a*a;toc,
> end
> > Elapsed time is 1.3113e-05 seconds.
> > Elapsed time is 1.90735e-05 seconds.
> > Elapsed time is 1.38283e-05 seconds.
> > Elapsed time is 1.3113e-05 seconds.
> > Elapsed time is 2.09808e-05 seconds.
> > Elapsed time is 4.88758e-05 seconds.
> > Elapsed time is 0.000244141 seconds.
> > Elapsed time is 0.00073719 seconds.
> > Elapsed time is 0.00500298 seconds.
> > Elapsed time is 0.0380011 seconds.
> > Elapsed time is 0.285108 seconds.
> > Elapsed time is 2.16196 seconds.
> > Elapsed time is 17.2197 seconds.
> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> > File: example-of-naive-matmul.c
> >
> > #include <stdlib.h>
> > #include <stdio.h>
> > #include <math.h>
> >
> > int
> > main(int argc, char **argv){
> >
> > int N ;
> > if(argc==0){
> > N=8192 ;
> > } else {
> > N=atoi(argv[1]) ;
> > }
> >
> > double *a=(double*)calloc(N*N,sizeof(double));
> > double *aT=(double*)calloc(N*N,sizeof(double));
> > for(int i=0 ; i<N ; i++){
> > for(int j =0 ; j<N ; j++){
> > a[i+N*j]=aT[j+N*i]=cos(1234*i+5678*j) ;
> > }
> > }
> >
> > double *b=(double*)calloc(N*N,sizeof(double));
> > for(int i=0 ; i<N ; i++){
> > for(int j=0 ; j<N ; j++){
> > double bij=0.0 ;
> > for(int k=0 ; k<N ; k++){
> > bij += aT[k+N*i]*a[k+N*j] ;
> > }
> > b[i+N*j]=bij ;
> > }
> > }
> > printf("\n") ;
> > /*
> > for(int i=0 ; i<5 ; i++){
> > for(int j=0 ; j<5 ; j++){
> > printf("%f\t",a[i+N*j]) ;
> > }
> > printf("\n") ;
> > }
> > printf("\n") ;
> > for(int i=0 ; i<5 ; i++){
> > for(int j=0 ; j<5 ; j++){
> > printf("%f\t",b[i+N*j]) ;
> > }
> > printf("\n") ;
> > }
> > */
> > }
> >
> > /* Sample run.
> > $ cc -o example-of-naive-matmul{,.c} -O3
> > $ for i in {1..13}; do n=`echo 2^$i|bc`; echo $n ; time
> > ./example-of-naive-matmul $n ; done
> > 2
> >
> >
> > real    0m0.038s
> > user    0m0.015s
> > sys     0m0.000s
> > 4
> >
> >
> > real    0m0.045s
> > user    0m0.000s
> > sys     0m0.030s
> > 8
> >
> >
> > real    0m0.047s
> > user    0m0.030s
> > sys     0m0.000s
> > 16
> >
> >
> > real    0m0.046s
> > user    0m0.046s
> > sys     0m0.015s
> > 32
> >
> >
> > real    0m0.051s
> > user    0m0.015s
> > sys     0m0.000s
> > 64
> >
> >
> > real    0m0.046s
> > user    0m0.000s
> > sys     0m0.030s
> > 128
> >
> >
> > real    0m0.045s
> > user    0m0.000s
> > sys     0m0.046s
> > 256
> >
> >
> > real    0m0.078s
> > user    0m0.015s
> > sys     0m0.030s
> > 512
> >
> >
> > real    0m0.268s
> > user    0m0.218s
> > sys     0m0.030s
> > 1024
> >
> >
> > real    0m1.840s
> > user    0m1.811s
> > sys     0m0.030s
> > 2048
> >
> >
> > real    0m14.043s
> > user    0m13.937s
> > sys     0m0.062s
> > 4096
> >
> >
> > real    1m49.829s
> > user    1m49.578s
> > sys     0m0.125s
> > 8192
> >
> >
> > real    14m34.843s
> > user    14m33.046s
> > sys     0m0.874s
> >
> > */
> >
> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> > I ran all of the above on a lower midrange laptop with Windows 10,
> > i5, 8GB RAM, 2 cores, 4 threads; I used J805, Anaconda python 3.5,
> > Octave 5.2.0.
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
>
>
> --
> This email has been checked for viruses by AVG.
> https://www.avg.com
>
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to