Indeed,

   scan=. ((~/)\.)(&.|.)

   %&:{./"_1 +/ .*  /\ (1 0,:~,&1)"0 ]10$1
1 2 1.5 1.66667 1.6 1.625 1.61538 1.61905 1.61765 1.61818
   %&:{./"_1 +/ .*scan (1 0,:~,&1)"0 ]10$1
1 2 1.5 1.66667 1.6 1.625 1.61538 1.61905 1.61765 1.61818

   stp=. ] (([ ((<;._1 '|Sentence|Space|Time|Space * Time') , (, */&.:>@:(1
2&{))@:(] ; 7!:2@:] ; 6!:2)&>) (10{a.) -.&a:@:(<;._2@,~) ]) [ (0 0 $
13!:8^:((0 e. ])`(12"_)))@:(2 -:/\ ])@:(".&.>)@:((10{a.) -.&a:@:(<;._2@,~)
]) ::(0 0&$@(1!:2&2)@:('Mismatch!'"_))) ".@:('0( : 0)'"_)

   stp 11
    %&:{./"_1 +/ .*/\   (1 0,:~,&1)"0 ]1000$1
    %&:{./"_1 +/ .*scan (1 0,:~,&1)"0 ]1000$1
)
┌─────────────────────────────────────────────┬──────┬───────────┬────────────┐
│Sentence                                     │Space │Time       │Space *
Time│
├─────────────────────────────────────────────┼──────┼───────────┼────────────┤
│    %&:{./"_1 +/ .*/\   (1 0,:~,&1)"0 ]1000$1│79552 │0.059218   │4710.91
  │
├─────────────────────────────────────────────┼──────┼───────────┼────────────┤
│    %&:{./"_1 +/ .*scan (1 0,:~,&1)"0 ]1000$1│206656│0.000644564│133.203
  │
└─────────────────────────────────────────────┴──────┴───────────┴────────────┘

   2,1}.,1 1&,"0]2*1+i.3
2 1 2 1 1 4 1 1 6

   %&:{./"_1 +/ .*/\   (1 0,:~,&1)"0 ]2,1}.,1 1&,"0]2*1+i.3
2 3 2.66667 2.75 2.71429 2.71875 2.71795 2.71831 2.71828
   %&:{./"_1 +/ .*scan (1 0,:~,&1)"0 ]2,1}.,1 1&,"0]2*1+i.3
2 3 2.66667 2.75 2.71429 2.71875 2.71795 2.71831 2.71828


   stp 11
   %&:{./"_1 +/ .*/\   (1 0,:~,&1)"0 ]2,1}.,1 1&,"0]2*1+i.30
   %&:{./"_1 +/ .*scan (1 0,:~,&1)"0 ]2,1}.,1 1&,"0]2*1+i.30
)
┌────────────────────────────────────────────────────────────┬─────┬───────────┬────────────┐
│Sentence                                                    │Space│Time
    │Space * Time│
├────────────────────────────────────────────────────────────┼─────┼───────────┼────────────┤
│   %&:{./"_1 +/ .*/\   (1 0,:~,&1)"0 ]2,1}.,1
1&,"0]2*1+i.30│19840│0.00190225 │37.7407     │
├────────────────────────────────────────────────────────────┼─────┼───────────┼────────────┤
│   %&:{./"_1 +/ .*scan (1 0,:~,&1)"0 ]2,1}.,1
1&,"0]2*1+i.30│30336│0.000149318│4.52972     │
└────────────────────────────────────────────────────────────┴─────┴───────────┴────────────┘

NB. 300 instead of 30 is too many...

On Mon, Jan 9, 2023 at 11:21 AM Henry Rich <henryhr...@gmail.com> wrote:

> f/\ is quadratic but f/\. shouldn't be.
>
> Henry Rich
>
> On 1/9/2023 11:20 AM, Marshall Lochbaum wrote:
> > It's not just Fibonacci numbers. This is equivalent to a general method
> > for computing continued fractions convergents in linear time, using
> > matrix multiplication. There's a nice explanation of why it works in
> > here:
> >
> > https://perl.plover.com/classes/cftalk/INFO/gosper.txt
> >
> > And a J version, with phi's continued fraction 1 1 1... :
> >
> >     %&:{./"_1 +/ .*/\ (1 0,:~,&1)"0 ]10$1
> > 1 2 1.5 1.66667 1.6 1.625 1.61538 1.61905 1.61765 1.61818
> >
> > Here's the continued fraction sequence for e:
> >
> >     2,1}.,1 1&,"0]2*1+i.3
> > 2 1 2 1 1 4 1 1 6
> >
> >     %&:{./"_1 +/ .*/\ (1 0,:~,&1)"0 ]2,1}.,1 1&,"0]2*1+i.3
> > 2 3 2.66667 2.75 2.71429 2.71875 2.71795 2.71831 2.71828
> >
> > My timings show J taking quadratic time for the scan, so this
> > formulation is pretty slow but shows the principle.
> >
> > Marshall
> >
> > On Sun, Jan 08, 2023 at 07:05:46PM -0800, Elijah Stone wrote:
> >> Can we generate phi, the golden ratio, in parallel?
> >>
> >> Of course we can!  Follows is an exposition of a classic method for
> doing
> >> it, which may be of interest; I have not seen it satisfactorily
> described
> >> elsewhere.
> >>
> >> The classic method for generating phi in j uses a continued fraction:
> >>
> >>     (+%)/10#1
> >> 1.61818
> >>
> >> (It can be equivalently spelt (1+%)^:n]1.)
> >>
> >> Using rational numbers clarifies slightly:
> >>
> >>     (+%)/10#1x
> >> 89r55
> >>
> >> Unsurprisingly, it's generating ratios of successive fibonacci
> numbers.  Can
> >> it be parallelised?  The operation used for reduction is not
> associative:
> >>
> >>     ((1 +% 1) +% 1) -: (1 +% (1 +% 1))
> >> 0
> >>
> >> So it's not obvious how we would parallelise it.  Taking a step back, it
> >> performs repeated division, where we don't know the divisor a priori,
> >> instead generating it recursively, so attacking it thus seems hopeless.
> >>
> >> Here's another method, based more directly on fibonacci numbers, which
> is
> >> more promising:
> >>
> >>     (u=. {:,+/)^:9]1 1
> >> 55 89
> >>
> >> Here we generate fibonacci numbers via a recurrence relation, using two
> >> successive terms to generate the next.
> >>
> >> At first glance, this seems just as hopelessly sequential as the first
> >> solution, but the use of ^: is a tell.  u^:n is the same as u@:u@:u@:
> ... n
> >> times.  And _@:_ is associative!  So if we can somehow express the
> operation
> >> of u as 'data', and ditto the composition of any number of us, then we
> can
> >> create a big array of n copies of u, and then reduce @: over it (in
> >> parallel), and finally apply the reduced u^:n to our y.
> >>
> >> Of course, this all depends on finding an efficient way of representing
> >> compositions of u.  If we can't do that, then we'll waste a bunch of
> >> parallel work constructing compositions, only to _still_ need linear
> >> sequential work at the end, once we apply our composed u.
> >>
> >> Let's look at the operation of u _symbolically_:
> >>
> >> u a,b is b,a+b
> >> u u a,b is (a+b),(a+2*b)
> >> u u u a,b is (a+2*b),((2*a)+(3*b))
> >>
> >> In other words, u gives two results, each of which is a linear
> combination
> >> of its two inputs.  And we have a convenient way of representing such
> >> functions: matrices!  Hence obtains an alternate implementation of u,
> as a
> >> matrix product:
> >>
> >>     u2=. (0 1,:1 1)&(+/ . *)
> >>     u2^:9]1 1 NB.same result as u
> >> 55 89
> >>
> >> Hence, we can generate an efficient representation for u^:n in parallel,
> >> with only logarithmic span, for matrix multiplication is isomorphic to
> >> composition (and it is associative).  The resultant function always
> takes
> >> the form of a 2x2 matrix, so we have only a constant amount of
> additional
> >> work to do at the end.
> >>
> >>     (+/ .*/9#,:0 1,:1 1) +/ .* 1 1
> >> 55 89
> >>
> >> The astute may notice that this is wasted parallelism.  We use a
> parallel
> >> reduction to find +/ .*/n#,:0 1,:1 1 in logarithmic time, but this is in
> >> fact just the nth power of matrix 0 1,:1 1, which can be calculated
> >> _sequentially_ in logarithmic time, by repeated squaring.  But this
> method
> >> has a key advantage over that: if we want the entire fibonacci
> sequence, we
> >> can generate it, still with logarithmic span and linear work, by simply
> >> replacing our reduction with a scan:
> >>
> >>     (+/ .*/\9#,:0 1,:1 1) +/ .* 1 1
> >>   1  2
> >>   2  3
> >>   3  5
> >>   5  8
> >>   8 13
> >> 13 21
> >> 21 34
> >> 34 55
> >> ----------------------------------------------------------------------
> >> For information about J forums see http://www.jsoftware.com/forums.htm
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
>
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to