You are considering only part of the domain
(points with the same direction) -- is that
part of the requirement for "meaningful"? 
Then it needs to be stated. Otherwise,
less casual experimentation reveals that 1 looks like
a smooth transition from similar neighboring states.
Whereas 2 gives a breaking point.


   ((0.6 teq)"0/~ ; (1 teq)"0/~; (1.4 teq)"0/~) i:6
+-------------------------+-------------------------+-------------------------+
|1 1 1 1 0 0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 0 0|1 1 1 1 1 1 1 1 1 0 0 0 0|
|1 1 1 1 1 0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 0 0|1 1 1 1 1 1 1 1 1 0 0 0 0|
|1 1 1 1 1 0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 0 0|1 1 1 1 1 1 1 1 0 0 0 0 0|
|1 1 1 1 1 0 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 0 0|1 1 1 1 1 1 1 1 0 0 0 0 0|
|0 1 1 1 1 1 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 1 1|
|0 0 0 0 1 1 0 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 0 0 0 0|1 1 1 1 1 1 1 0 0 1 1 1 1|
|0 0 0 0 0 0 1 0 0 0 0 0 0|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|0 0 0 0 0 0 0 1 1 0 0 0 0|0 0 0 0 0 0 1 1 1 1 1 1 1|1 1 1 1 0 0 1 1 1 1 1 1 1|
|0 0 0 0 0 0 0 1 1 1 1 1 0|0 0 0 0 0 0 1 1 1 1 1 1 1|1 1 0 0 0 0 1 1 1 1 1 1 1|
|0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 0 0 0 0 1 1 1 1 1 1 1|0 0 0 0 0 1 1 1 1 1 1 1 1|
|0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 0 0 0 0 1 1 1 1 1 1 1|0 0 0 0 0 1 1 1 1 1 1 1 1|
|0 0 0 0 0 0 0 0 1 1 1 1 1|0 0 0 0 0 0 1 1 1 1 1 1 1|0 0 0 0 1 1 1 1 1 1 1 1 1|
|0 0 0 0 0 0 0 0 0 1 1 1 1|0 0 0 0 0 0 1 1 1 1 1 1 1|0 0 0 0 1 1 1 1 1 1 1 1 1|
+-------------------------+-------------------------+-------------------------+
   ((1.6 teq)"0/~ ; (2 teq)"0/~; (2.4 teq)"0/~) i:6
+-------------------------+-------------------------+-------------------------+
|1 1 1 1 1 1 1 1 1 1 0 0 0|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 1 1 1 1 1 0 0 0|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 1 1 1 1 0 0 0 0|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 1 1 1 0 0 0 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 1 1 1 0 0 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 1 1 0 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 1 1 0 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 1 0 0 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|1 1 0 0 0 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|0 0 0 0 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|0 0 0 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
|0 0 0 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1|
+-------------------------+-------------------------+-------------------------+


--- Roger Hui <[EMAIL PROTECTED]> wrote:

> Evidently you don't consider that 
> 
>    1 (1 teq) 1e9
> 1
> 
> is not a "meaningful result".  Even casual further experimentation
> produces:
> 
>    1 (1 teq) 0 1 2 3 4 5 6
> 1 1 1 1 1 1 1
>    1 teq"0/~ 10 [EMAIL PROTECTED] 1e6
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 1 1 1 1 1 1 1 1 1 1
> 
> is that meaningless enough for you?
> 
> 
>  
> ----- Original Message ----- 
> From: "Oleg Kobchenko" <[EMAIL PROTECTED]>
> To: "Programming forum" <[email protected]>
> Sent: Tuesday, May 30, 2006 10:33 AM
> Subject: Re: [Jprogramming] Equal tolerance fit conjunction -- again
> 
> It says "tolerances greater than or equal to 1 do 
> not give meaningful results". And then it gives
> one example of a "bad" case
>    1 (1 teq) 1e9
> 1
> 
> I give other examples that "work" for 1<t<2.
> 
> So what is a "meaningful" result?
> 
> What should we require of t in order to 
> restrict its domain?
> 
> If p is the one with the larger magnitude, than
> the domain of q (with less than or equal marnitude)
> is (-|p)..|p (or circle with radius |p at origin for complex).
> The task of identification is to classify in two groups: 
> equal or not equal. Domain of t will determine the quality 
> of how well it will be able to classify.
>  - t should be non-negative real, because the radius is non-negative
>  - if t is 0, the radius is 0 so it will identify only one q = p
>  - if t=1 it will identify exactly half of domain of q for reals
>    (or intersection of cicles of radius |p and origins at 0 and p)
>  - if t>:2 it will identify all q
> 
> So why should 1 as a break point be preferred over 2?
> 
> 
> --- Roger Hui <[EMAIL PROTECTED]> wrote:
> 
> > The fact that t must be less than 1 is demonstrated
> > in the tolerant comparison essay.
> > http://www.jsoftware.com/jwiki/Essays/Tolerant_Comparison
> > Since I had already cited the essay in this thread
> > and you yourself had also cited it, I assume you have
> > read it.  Then I don't understand why you said what you
> > did in (*).  The essay states and demonstrates that the
> > tolerance t must be less than 1.  Why do you then bring
> > up cases where t is greater than 1?
> > 
> > 
> > 
> > ----- Original Message ----- 
> > From: "Oleg Kobchenko" <[EMAIL PROTECTED]>
> >   *) it's not totally clear how it is a consequence
> > that t must be less than 1. Something is happening
> > between 1 and 2 as well:
> >    _1 (1.9 eq) 1
> > 0
> >    _1 (2 eq) 1
> > 1
> >    _1 (1.4 eq) 0.5
> > 0
> >    _1 (1.5 eq) 0.5
> > 1
> 
> 
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
> 


__________________________________________________
Do You Yahoo!?
Tired of spam?  Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to