Yeah - I found this, too, which describes the inverse problem of deducing the parameters from the transformed coordinates: http://www.maths.dundee.ac.uk/~gawatson/helmertrev.pdf .
On 1/23/07, David Mitchell <[EMAIL PROTECTED]> wrote:
Perhaps this describes the problem: http://www.killetsoft.de/p_svpa_e.htm -- David Mitchell Devon McCormick wrote: > Are you saying you need to work backwards from the source and > destination points to derive the 7 parameters? > > On 1/22/07, Faludi Zoltán <[EMAIL PROTECTED]> wrote: >> >> Hello! >> >> How can I implement the calculation of 3D helmert transformation >> parameters (7 param)? >> dx: shift in meters >> dy: shift in meters >> dz: shift in meters >> rx: rotation in arc seconds >> ry: rotation in arc seconds >> rz: rotation in arc seconds >> ppm: scaling in parts per million >> >> I have two matrices with the common points of the source (src) and the >> destionation (dst) coordinate system. >> >> for example: >> src=. 10 3 $ 4190468.039 1419136.810 4578982.785 4198120.436 1411059.537 >> 4574631.898 4198048.482 1417658.260 4572620.884 4192498.898 1425966.119 >> 4575143.392 4186048.597 1425904.183 4580905.806 4184439.769 1410536.684 >> 4587280.046 4186429.631 1417172.136 4583253.796 4188328.078 1406719.780 >> 4584890.778 4178864.584 1419611.655 4589354.898 4180122.057 1426529.969 >> 4586084.915 >> dst=. 10 3 $ 4190406.336 1419205.511 4578987.084 4198058.784 1411128.221 >> 4574636.297 4197986.816 1417726.961 4572625.286 4192437.202 1426034.821 >> 4575147.692 4185986.869 1425972.859 4580910.112 4184378.098 1410605.362 >> 4587284.395 4186367.950 1417240.794 4583258.087 4188266.426 1406788.485 >> 4584895.125 4178802.915 1419680.300 4589359.234 4180060.331 1426598.633 >> 4586089.223 >> >> >> -- >> Zoltan >> >> >> ---------------------------------------------------------------------- >> For information about J forums see http://www.jsoftware.com/forums.htm >> > > > ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm
-- Devon McCormick ^me^ at acm. org is my preferred e-mail ---------------------------------------------------------------------- For information about J forums see http://www.jsoftware.com/forums.htm
