Yeah - I found this, too, which describes the inverse problem of deducing
the parameters
from the transformed coordinates:
http://www.maths.dundee.ac.uk/~gawatson/helmertrev.pdf .


On 1/23/07, David Mitchell <[EMAIL PROTECTED]> wrote:

Perhaps this describes the problem:  http://www.killetsoft.de/p_svpa_e.htm

--
David Mitchell

Devon McCormick wrote:
> Are you saying you need to work backwards from the source and
> destination points to derive the 7 parameters?
>
> On 1/22/07, Faludi Zoltán <[EMAIL PROTECTED]> wrote:
>>
>> Hello!
>>
>> How can I implement the calculation of 3D helmert transformation
>> parameters (7 param)?
>> dx: shift in meters
>> dy: shift in meters
>> dz: shift in meters
>> rx: rotation in arc seconds
>> ry: rotation in arc seconds
>> rz: rotation in arc seconds
>> ppm: scaling in parts per million
>>
>> I have two matrices with the common points of the source (src) and the
>> destionation (dst) coordinate system.
>>
>> for example:
>> src=. 10 3 $ 4190468.039 1419136.810 4578982.785 4198120.436
1411059.537
>> 4574631.898 4198048.482 1417658.260 4572620.884 4192498.898 1425966.119
>> 4575143.392 4186048.597 1425904.183 4580905.806 4184439.769 1410536.684
>> 4587280.046 4186429.631 1417172.136 4583253.796 4188328.078 1406719.780
>> 4584890.778 4178864.584 1419611.655 4589354.898 4180122.057 1426529.969
>> 4586084.915
>> dst=. 10 3 $ 4190406.336 1419205.511 4578987.084 4198058.784
1411128.221
>> 4574636.297 4197986.816 1417726.961 4572625.286 4192437.202 1426034.821
>> 4575147.692 4185986.869 1425972.859 4580910.112 4184378.098 1410605.362
>> 4587284.395 4186367.950 1417240.794 4583258.087 4188266.426 1406788.485
>> 4584895.125 4178802.915 1419680.300 4589359.234 4180060.331 1426598.633
>> 4586089.223
>>
>>
>> --
>> Zoltan
>>
>>
>> ----------------------------------------------------------------------
>> For information about J forums see http://www.jsoftware.com/forums.htm
>>
>
>
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm




--
Devon McCormick
^me^ at acm.
org is my
preferred e-mail
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to