Don't have a theory to offer, but you can compare to next term and
keep exact result to almost the end.
    10^.-/%/"1(1 3,:1 1)&(+/ .*)^:(40+i.2)]1 0x
_22.2352



Devon McCormick wrote:
> Members of the Forum -
> 
> If I'm approximating, e.g. the square root of 3, with a matrix method which
> returns an extended precision numerator and denominator, when I work out the
> decimal equivalent of this, at what point do I run out of significant
> digits?
> 
> For example,
> 
>    (1 3,:1 1)&(+/ .*)^:(5+i.5)],.1 0  NB. Successive approximations of %:3
>   76
>   44
> 
>  208
>  120
> 
>  568
>  328
> 
> 1552
>  896
> 
> 4240
> 2448
>    (%:3)-%/(1 3,:1 1)&(+/ .*)^:10],.x: 1 0  NB. How far off are successive
> approximations?
> _6.6086991e_6
>    (%:3)-%/(1 3,:1 1)&(+/ .*)^:20],.x: 1 0
> _1.2607915e_11
>    (%:3)-%/(1 3,:1 1)&(+/ .*)^:30],.x: 1 0
> _2.220446e_16
>    (%:3)-%/(1 3,:1 1)&(+/ .*)^:40],.x: 1 0  NB. More than 16 digits
> 0
>    (1 3,:1 1)&(+/ .*)^:40],.x: 1 0    NB. How precise is this in decimal?
> 144052522725670912
>  83168762773110784
>    2^.(1 3,:1 1)&(+/ .*)^:40],.x: 1 0 NB. Bits/number - relevant?
> 56.999373
> 56.206891
> 
>>From the progression of exponents in the cases for 10, 20, and 30
> iterations, I'm guessing the answer should be about 21 significant digits
> but is there a way to better quantify this?
> 
> Thanks,
> 
> Devon

-- 
Clifford A. Reiter
Mathematics Department, Lafayette College
Easton, PA 18042 USA,   610-330-5277
http://www.lafayette.edu/~reiterc
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to