Roger Hui <[email protected]> wrote:

> If you can suggest the desired derivates/integrals,
> it would greatly aid in filling the gaps. e.g.
>            derivative      integral
> 0&o.
> 4&0.
> etc.
>
> Since f@g d. 1 exists if f and g are, the effects
> are magnified.

Here are a few more missing functions:

Taylor expansions:
 3&o.t: => (2&|*[:{:(+/\@|.@(,&0))^:(]`(1+0&*)))"0%!
 7&o.t. => ({&0 1 0 _1@(4&|)*[:{:(+/\@|.@(,&0))^:(]`(1+0&*)))"0%!
 _2&o.t. => 0.5p1"_`(-@(2&|*(%~(*/@(>:%2&+)@(i.@<.&.-:)))))@.(0&<)"0
 _6&o.t. => j.@(0.5p1"_`(-@(2&|*(%~(*/@(>:%2&+)@(i.@<.&.-:)))))@.(0&<))"0
 _9&o.t. => {&0 1 0@(2&<.)
 _11&o.t. => {&0 0j1 0@(2&<.)
 _12&o.t. => {&(1 0j1 _1 0j_1)@(4&|)%!

Weighted Taylor expansions:
 3&o.t: => (2&|*[:{:(+/\@|.@(,&0))^:(]`(1+0&*)))"0
 7&o.t: => ({&0 1 0 _1@(4&|)*[:{:(+/\@|.@(,&0))^:(]`(1+0&*)))"0
 _2&o.t: => 0.5p1"_`(-@(2&|**:@(*/)@(>:@(i.@<.&.-:))))@.(0&<)"0
 _6&o.t: => j.@(0.5p1"_`(-@(2&|**:@(*/)@(>:@(i.@<.&.-:))))@.(0&<))"0
 _9&o.t: => {&0 1 0@(2&<.)
 _11&o.t: => {&0 0j1 0@(2&<.)
 _12&o.t: => {&(1 0j1 _1 0j_1)@(4&|)

Derivatives valid for real y:
 *d.1 => 0"0
 |d.1 => *  NB. Technically, *@+
 9&o.d.1 => 1"0
 10&o.d.1 => *  NB. Technically, *@+
 11&o.d.1 => 0"0
 12&o.d.1 => 0"0
 _10&o.d.1 => 1"0

Integrals valid for real y:
 *d._1 => |  NB. Technically, |@+
 |.d._1 => -:@:*:%*
 9&o.d._1 => -:@:*:
 10&o.d._1 => -:@:*:%*
 11&o.d._1 => 0"0
 12&o.d._1 => *1p1*0&>
 _10&o.d._1 => -:@:*:

Also, hooks work with t. and t: but not d.
(u v)d.n could be treated as ([u v)d.n or ([u v@])d.n:

   (]+*:)t.
{&0 1 1 0x@(3x&<.)
   (+*:)t.
{&0 1 1 0x@(3x&<.)
   (]+*:) d.1
1 2x&p.
   (+*:) d.1
|domain error
|       (+*:)d.1

While typing the above, I did notice this strange anomaly:
   (+*:)t.
{&0 1 1 0x@(3x&<.)
   (+*:@])t.
{&0 1 1 0 0 0x@(5x&<.)

-- Mark D. Niemiec <[email protected]>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to