It just says that if each permutation (of axes) in P gives the identity on
A, then any composition of those permutations also gives the identity.

Marshall

On Mon, Oct 10, 2011 at 4:49 PM, Brian Schott <schott.br...@gmail.com>wrote:

> I enjoyed the Essay and went on to view the embedded Essay here which
> was fascinating, also.
>
> http://www.jsoftware.com/jwiki/Essays/Symmetric%20Array
>
> However, I could not follow one step of the Symmetric Array Essay.
>
> "
> and so on; similarly, if  P (] -: |:)"1 _ A  , then
>   A -: p0|:p2|:p1|:A
>   A -: p0|:p4|:p2|:p0|:p7|:p2|:A
> for all sequences from the set of permutations P .
> "
>
> I assume the p0, p2, ... are permutation vectors of P, but that's as
> far as I can get.
>
>
>
> On Mon, Oct 10, 2011 at 12:59 AM, Roger Hui <rhui...@shaw.ca> wrote:
> > http://www.jsoftware.com/jwiki/Essays/Reflexive
> >
>
> --
> (B=)
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to