What is the relation between the integrals ( 
http://www.jsoftware.com/jwiki/Pi/AConvergentSeries ) and the Bernoulli 
numbers? Or
where can I find it?


R.E. Boss


> -----Oorspronkelijk bericht-----
> Van: programming-boun...@jsoftware.com 
> [mailto:programming-boun...@jsoftware.com] Namens Viktor Cerovski
> Verzonden: dinsdag 15 mei 2012 18:54
> Aan: programming@jsoftware.com
> Onderwerp: Re: [Jprogramming] Challenge 12(?)
> 
> 
> 
> R.E.  Boss wrote:
> >
> > I scanned a part of Exploratory Experimentation and Computation,
> > https://www.opendrive.com/files?57384074_sCfMP , where two
> > statements are made about a very rapidly convergent series.
> >
> > 1. The first term coincides with (pi % 8) in the first 42 digits
> > 2. The first 2 terms even give 500 digits
> >
> > How can these two statements be confirmed (or rejected) with J?
> >
> They can be confirmed by calculating the integrals.
> 
> Bernoulli numbers are involved among other things, and Roger's essay
> http://www.jsoftware.com/jwiki/Essays/Bernoulli%20Numbers
> gives
> 
> B0=: 3 : 0
>  b=. ,1x
>  for_m. }.i.x: y do. b=. b,(1+m)%~-+/b*(i.m)!1+m end.
> )
> 
> which can be shortened to:
> 
> B0t=: [: ([ , +/@:(* i.!>:) -@% 1+])~/ }:@i.@-,1:
> 
>    B0 20
> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0 _3617r510 0
> 43867r798 0
> 
>    B0t 20x
> 1 _1r2 1r6 0 _1r30 0 1r42 0 _1r30 0 5r66 0 _691r2730 0 7r6 0 _3617r510 0
> 43867r798 0
> 
>    ts 'y0=.B0 200'
> 1.85257 362496
> 
>    ts 'y0t=.B0t 200x'
> 1.8853 293888
> 
>    y0-:y0t
> 1
> 
> 
> 
> 
> 
> >
> > (No deadlines apply.)
> >
> >
> > R.E. Boss
> >
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> >
> >
> 
> --
> View this message in context: 
> http://old.nabble.com/Challenge-12%28-%29-tp33844136s24193p33849223.html
> Sent from the J Programming mailing list archive at Nabble.com.
> 
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm

----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to