Wow.. thats quite a bit of work.   ..  though I must admit on first
inspection of the kernel code it was evident that as the kernel goes
up and down tree there is a great deal of waiting.

Any how I don't quite have the energy to get another version working
in the near future. I'm leaving it to the community to use the code or
not.

Regards

Nithin

@Andreas: I've attached an improved version with a few bug fixes.

On 22 February 2011 23:24, Bryan Catanzaro <catan...@eecs.berkeley.edu> wrote:
> There has been lots of work on Parallel Prefix Sum on GPUs. The
> difference between implementations of Inclusive and Exclusive prefix
> sum is very minor, and both can be implemented efficiently.
> Focusing on work efficiency for GPUs is actually a distracting red
> herring, especially when you're using a fully parallel recursive
> parallel Prefix Sum, as you are doing.  This is for two reasons:
> 1.  GPUs are SIMD machines, so work efficiency as counted by the PRAM
> model does not always correlate to saving work on the actual hardware.
> 2.  The work involved in synchronizing and coordinating threads is not
> counted as "work" in traditional analyses.  On GPUs, floating-point
> operations are essentially free.  Communication and coordination
> between parallel threads, however, is very expensive.  Instead of
> doing a fully parallel recursive parallel prefix sum, it's much more
> efficient to sequentialize the sum as much as possible, expressing
> only enough parallelism to fill the chip.
>
> It's also advantageous to take advantage of commutativity - have you
> defined whether your scan implementation accepts associative but
> non-commutative operators?  If you require operators to be both
> associative and commutative, you can improve performance
> significantly.  I wrote up some things about reductions (which are
> related to scan) here:
> http://developer.amd.com/documentation/articles/pages/opencl-optimization-case-study-simple-reductions.aspx
>
> As you can see, the "2-phase" reduction kernels are much faster than
> the "recursive multi-phase" kernels.  Your implementation uses the
> recursive multi-phase approach.  There are two analogues of the
> 2-phase reduction kernel for scan on an n element array with p
> processors (thread blocks), both of which require exactly 3 kernel
> launches, regardless of n or p:
>
> * Reduce, Scan, Scan:  Divide the input into blocks of n/p elements.
> Perform reductions on these blocks in parallel, write out the sum of
> each block to a temporary array.  Perform a scan on the temporary
> array (this should only require 1 thread block and one kernel, since
> there are only p elements in the temporary array).  Perform a scan on
> the input, this time starting each block with the appropriate result
> from the scan.
> * Scan, Scan, Add: Scan the blocks in parallel, write the results out.
>  Perform a scan on the first result from each block (this should only
> require 1 thread block and one kernel launch, since there are only p
> blocks.  Broadcast the appropriate result from the partial scan and
> perform vector addition in each block.
>
> If you sequentialize these operations as much as possible, and do
> parallel reduction/scan trees only when absolutely necessary, you will
> save a lot of synchronization and communication cost.  You can take a
> look at Thrust [1] to see an example of how this can be done.
>
> Best of luck,
> bryan
>
> [1] Thrust: http://code.google.com/p/thrust
>
>
>
> On Tue, Feb 22, 2011 at 1:47 AM, nithin s <nithin19...@gmail.com> wrote:
>> Hi Andreas
>>
>> On 22 February 2011 05:45, Andreas Kloeckner <li...@informa.tiker.net> wrote:
>>> Hi Nithin,
>>>
>>> two requests:
>>>
>>> - can you please resend this as an attachment? It's hard to fish out of
>>>  the text of an email.
>> Done
>>>
>>> - please avoid using floating point functions (log, ceil, floor) in
>>>  integer contexts. PyCUDA comes with a bitlog2 function that does what
>>>  you need, I think.
>>
>> bitlog2 alone doesn't cut it. This is becase the log is taken to the
>> base 2*block_size. block_size need not be a power of 2 in a few rare
>> cases. This is because if shared mem is limited then the block_size =
>> shared_mem/item_size. Now Item size need not be a power of 2 (If we
>> are willing to support arbitrary types.. though there is a limitation
>> .. since dtype needs to be known for partial sum array
>> allocations..which is presumably numpy.dtype).
>>
>> This will mess up the estimate. I could recode this by writing a
>> routine by repeatedly dividing and calculating the necessary int ciel.
>> I feel the current expression is cleaner and concise. Let me know if
>> you still feel otherwise.
>>
>>>
>>> Once I get the file posted on the PyCUDA branch, I'll write a more
>>> complete review. I agree with your assessment of inclusive vs exclusive
>>> scan. I'd say go ahead and kill the inclusive version.
>>>
>>> Tomasz, what's your take here?
>>>
>>> Andreas
>>>
>>>
>>
>> Regards
>>
>> Nithin
>>
>>
>> @Bryan: Tomaszs' original inclusive scan impl was based on the naive
>> prefix scan algorithm at http://en.wikipedia.org/wiki/Prefix_sum. This
>> is not particularly work efficient. I don't (yet) see a neat way to
>> convert the Exclusive Mark Harris version to an inclusive one.Thus I
>> thought it better to maintain a single exclusive prefix scan.
>>
>> _______________________________________________
>> PyCUDA mailing list
>> PyCUDA@tiker.net
>> http://lists.tiker.net/listinfo/pycuda
>>
>>
>
from pycuda import driver, compiler, gpuarray, tools, reduction
from warnings import warn

exclusive_scan_source = """
        %(preamble)s
        
        #define SUM(a, b) (%(scan_operation)s)
        
        __device__ unsigned int %(name)s_next_power_of_2(unsigned int v)
        {
            v -= 1;
            v |= v >> 1;
            v |= v >> 2;
            v |= v >> 4;
            v |= v >> 8;
            v |= v >> 16;
            return v + 1;                
        }
        
        extern "C"
        {      

            __global__ void %(name)s(const %(data_type)s *i_data,%(data_type)s *o_data
%(if_part_sum)s                     ,%(data_type)s *partial_sum
                                    ,const int n
%(if_tail)s                         ,const int block_index
                                    )
            {
                extern __shared__ %(data_type)s shared_array[];

                int source_node_index = threadIdx.x;
                
                // Size of shared array that can contain input data
%(if_main)s     const int full_array_size = n;
%(if_tail)s     const int full_array_size = %(name)s_next_power_of_2(n);

%(if_main)s     const int block_index  = blockIdx.x;
                const int block_offset = 2*block_index*blockDim.x;
                int tree_node_distance = 1;

                int target_node_index = threadIdx.x + (n/2);
                
%(if_tail)s     if (source_node_index < n) 
                {                
                    shared_array[source_node_index + SHARED_BANK_PADDING(source_node_index)] =
                    i_data[source_node_index + block_offset];
                }
%(if_tail)s     else {shared_array[source_node_index + SHARED_BANK_PADDING(source_node_index)] = %(neutral)s;}

%(if_tail)s     if (target_node_index < n) 
                {
                    shared_array[target_node_index + SHARED_BANK_PADDING(target_node_index)] =
                    i_data[target_node_index + block_offset];
                }
%(if_tail)s     else {shared_array[target_node_index + SHARED_BANK_PADDING(target_node_index)] = %(neutral)s;}

                // Travel upwards, from leaves to the root of the tree
                // During each loop time distance between nodes increases two times,
                // and number of nodes decreases two times
                for (int number_of_nodes = full_array_size>>1; number_of_nodes > 0;
                    number_of_nodes >>= 1) 
                {
                    __syncthreads();

                    if (threadIdx.x < number_of_nodes) 
                    {
                        int source_node_index = tree_node_distance*(2*threadIdx.x+1)-1;
                        int target_node_index = tree_node_distance*(2*threadIdx.x+2)-1;
                        source_node_index += SHARED_BANK_PADDING(source_node_index);
                        target_node_index += SHARED_BANK_PADDING(target_node_index);

                        shared_array[target_node_index] =
                            SUM(shared_array[target_node_index],
                            shared_array[source_node_index]);
                    }
                    tree_node_distance <<= 1;
                }

                if (threadIdx.x == 0) 
                {
%(if_part_sum)s     partial_sum[block_index] = shared_array[full_array_size-1 + SHARED_BANK_PADDING(full_array_size-1)];
                    shared_array[full_array_size-1 + SHARED_BANK_PADDING(full_array_size-1)] = %(neutral)s;
                }

                // Travel downwards, from root to the leaves
                // During each loop number of nodes increases two times and
                // distance between nodes decreases two times
                for (int number_of_nodes = 1; number_of_nodes < full_array_size; number_of_nodes <<= 1)
                {
                    tree_node_distance >>= 1;
                    __syncthreads();

                    if (threadIdx.x < number_of_nodes) 
                    {
                        int source_node_index = tree_node_distance*(2*threadIdx.x+1)-1;
                        int target_node_index = tree_node_distance*(2*threadIdx.x+2)-1;
                        source_node_index += SHARED_BANK_PADDING(source_node_index);
                        target_node_index += SHARED_BANK_PADDING(target_node_index);

                        %(data_type)s temp = shared_array[source_node_index];
                        shared_array[source_node_index] = shared_array[target_node_index];
                        shared_array[target_node_index] =
                            SUM(shared_array[target_node_index], temp);
                    }
                }
                __syncthreads();
                
%(if_tail)s     if (source_node_index < n)
                {                
                    o_data[source_node_index + block_offset] =
                        shared_array[source_node_index +
                        SHARED_BANK_PADDING(source_node_index)];
                }
                
%(if_tail)s     if (target_node_index < n) 
                {
                    o_data[target_node_index + block_offset] =
                        shared_array[target_node_index +
                        SHARED_BANK_PADDING(target_node_index)];
                }
            }
        }

"""


uniform_sum_source = """
        %(preamble)s
        
        #define SUM(a, b) (%(scan_operation)s)
        
        extern "C"
        {      
        
            __global__ void %(name)s(%(data_type)s *o_data,%(data_type)s *partial_sum
                                    ,const int n
%(if_tail)s                         ,const int block_index
                                    )
            {
                extern __shared__ %(data_type)s shared_array[];

                int source_node_index = threadIdx.x;
                
                // Size of shared array that can contain input data

%(if_main)s     const int block_index  = blockIdx.x+1;
                const int block_offset = 2*block_index*blockDim.x;

                int target_node_index = threadIdx.x + ((n==1)?(1):(n/2));
                
                if (threadIdx.x == 0) 
                {
                    shared_array[0] = partial_sum[block_index];
                }
                
                __syncthreads();                

                %(data_type)s prev_block_sum = shared_array[0];
                
%(if_tail)s     if (source_node_index < n)
                {                    
                    o_data[source_node_index + block_offset] = SUM(prev_block_sum,o_data[source_node_index + block_offset]);
                }
                
%(if_tail)s     if (target_node_index < n) 
                {
                    o_data[target_node_index + block_offset] = SUM(prev_block_sum,o_data[target_node_index + block_offset]);
                }
            }
        }

"""


def _div_ceil(nr, dr):
  return int(int(nr + dr -1)/int(dr))
  
def get_num_levels(n,c):
  l = 0  
  while(n != 1):    
    l += 1
    n = _div_ceil(n,c)
  return l

def get_num_chunks(n,c,i):
  return _div_ceil(n,pow(c,i))

# TODO: check this four .. is it future proof??
padding_preamble = "\n#define SHARED_BANK_PADDING(n) ((n) >> 4)\n"
#padding_preamble = "\n#define SHARED_BANK_PADDING(n) 0\n"
    
class ExclusivePrefixKernel(object):
    def __init__(self, data_type, scan_operation, neutral,item_size = None,
              keep = False, options = [], preamble = '',name='prefix_kernel'):
          
        self.item_size = item_size
          
        if self.item_size == None:        
          # Determine the size of used data type
          self.numpy_type = tools.parse_c_arg("const %s * in" % 
              data_type).dtype
          self.item_size = self.numpy_type.itemsize

        # Determine the number of threads
        dev = driver.Context.get_device()
        block_size = dev.get_attribute(driver.device_attribute.MAX_THREADS_PER_BLOCK)
        block_dimension =  dev.get_attribute(driver.device_attribute.MAX_BLOCK_DIM_X)
        self.block_size = min(block_size, block_dimension)

        # Shared memory size: two items per thread, number of threads,
        # size of one data item
        self.shared_size = self.get_chunk_size()*self.item_size
        # Padding to avoid bank conflicts
        # TODO: is this always 4??
        log_num_banks = 4
        self.shared_size += ((self.get_chunk_size() >> log_num_banks) * 
            self.item_size)

        # Check whether we do not exceed available shared memory size
        max_shared_size = dev.get_attribute(driver.device_attribute.MAX_SHARED_MEMORY_PER_BLOCK)
        if self.shared_size > max_shared_size:            
            warn ("Changed shared size")
            self.shared_size = max_shared_size
            self.block_size = self.shared_size/(2*self.item_size)

        self.main_function = self.get_main_function(data_type, scan_operation,
            neutral, name, keep, options, preamble)
        self.main_function.prepare("PPi", block=(self.block_size, 1, 1),
            shared=self.shared_size)
            
        self.tail_function = self.get_tail_function(data_type, scan_operation,
            neutral, name, keep, options, preamble)
        self.tail_function.prepare("PPii", block=(self.block_size, 1, 1),
            shared=self.shared_size)
            
        self.main_part_sum_function = self.get_main_part_sum_function(data_type, scan_operation,
            neutral, name, keep, options, preamble)
        self.main_part_sum_function.prepare("PPPi", block=(self.block_size, 1, 1),
            shared=self.shared_size)
            
        self.tail_part_sum_function = self.get_tail_part_sum_function(data_type, scan_operation,
            neutral, name, keep, options, preamble)
        self.tail_part_sum_function.prepare("PPPii", block=(self.block_size, 1, 1),
            shared=self.shared_size)
            
        self.main_uniform_sum_function = self.get_main_uniform_sum_function(data_type, scan_operation,
            neutral, name, keep, options, preamble)
        self.main_uniform_sum_function.prepare("PPi", block=(self.block_size, 1, 1),
            shared=self.item_size)
        
        self.tail_uniform_sum_function = self.get_tail_uniform_sum_function(data_type, scan_operation,
            neutral, name, keep, options, preamble)
        self.tail_uniform_sum_function.prepare("PPii", block=(self.block_size, 1, 1),
            shared=self.item_size)            
            
        # Use maximum available shared memory in 2.x devices
        # TODO: is it needed as we are more limited by number of threads?
        # Might be needed for large data types (?)
        if dev.compute_capability() >= (2, 0):
            cache_size = pycuda.driver.func_cache.PREFER_SHARED
            self.main_function.set_cache_config(cache_size)
            self.tail_function.set_cache_config(cache_size)
            self.main_part_sum_function.set_cache_config(cache_size)
            self.tail_part_sum_function.set_cache_config(cache_size)            
        
    def get_chunk_size(self):
        return 2 * self.block_size
        
    def get_main_function(self, data_type, scan_operation, neutral,
        name = 'prefix_kernel', keep = False, options = [], preamble = ''):
        
        src =    exclusive_scan_source % {
          'data_type': data_type,
          'name': name,
          'neutral': neutral,
          'scan_operation': scan_operation,
          'preamble': preamble+padding_preamble,
          'if_tail': "//",
          'if_main': "",
          'if_part_sum': "//",
          }
          
        return compiler.SourceModule(src, options=options, keep=keep,no_extern_c=True).get_function(name)
    
    def get_tail_function(self, data_type, scan_operation, neutral,
        name = 'prefix_kernel', keep = False, options = [], preamble = ''):
        
        src =    exclusive_scan_source % {
          'data_type': data_type,
          'name': name,
          'neutral': neutral,
          'scan_operation': scan_operation,
          'preamble': preamble+padding_preamble,
          'if_tail': "",
          'if_main': "//",
          'if_part_sum': "//",
          }
          
        return compiler.SourceModule(src, options=options, keep=keep,no_extern_c=True).get_function(name)
    
    def get_main_part_sum_function(self, data_type, scan_operation, neutral,
        name = 'prefix_kernel', keep = False, options = [], preamble = ''):
        
        src =    exclusive_scan_source % {
          'data_type': data_type,
          'name': name,
          'neutral': neutral,
          'scan_operation': scan_operation,
          'preamble': preamble+padding_preamble,
          'if_tail': "//",
          'if_main': "",
          'if_part_sum': "",
          }
          
        return compiler.SourceModule(src, options=options, keep=keep,no_extern_c=True).get_function(name)

    def get_tail_part_sum_function(self, data_type, scan_operation, neutral,
        name = 'prefix_kernel', keep = False, options = [], preamble = ''):
        
        src =    exclusive_scan_source % {
          'data_type': data_type,
          'name': name,
          'neutral': neutral,
          'scan_operation': scan_operation,
          'preamble': preamble+padding_preamble,
          'if_tail': "",
          'if_main': "//",
          'if_part_sum': "",
          }
          
        return compiler.SourceModule(src, options=options, keep=keep,no_extern_c=True).get_function(name)
        
    def get_main_uniform_sum_function(self, data_type, scan_operation, neutral,
        name = 'uniform_add_kernel', keep = False, options = [], preamble = ''):
        
        src =    uniform_sum_source % {
          'data_type': data_type,
          'name': name,
          'scan_operation': scan_operation,
          'preamble': preamble+padding_preamble,
          'if_tail': "//",
          'if_main': "",        
          }
          
        return compiler.SourceModule(src, options=options, keep=keep,no_extern_c=True).get_function(name)
        
    def get_tail_uniform_sum_function(self, data_type, scan_operation, neutral,
        name = 'uniform_add_kernel', keep = False, options = [], preamble = ''):
        
        src =    uniform_sum_source % {
          'data_type': data_type,
          'name': name,
          'scan_operation': scan_operation,
          'preamble': preamble+padding_preamble,
          'if_tail': "",
          'if_main': "//",        
          }
          
        return compiler.SourceModule(src, options=options, keep=keep,no_extern_c=True).get_function(name)
    
        
    def call_final(self,input_size,i_data,o_data):
      
        block_count = _div_ceil(input_size,self.get_chunk_size())
        
        if input_size != block_count * self.get_chunk_size():
            if block_count > 1:
                self.main_function.prepared_call((block_count-1, 1),
                    i_data, o_data, self.get_chunk_size())
            self.tail_function.prepared_call((1, 1), i_data,
                o_data,
                input_size - (block_count - 1) * self.get_chunk_size(), (block_count - 1))
        else:
            self.main_function.prepared_call((block_count, 1),
                i_data, o_data,
                self.get_chunk_size())                
                
    def call_intermediate(self,input_size,i_data,o_data,part_sum_buf):
      
        block_count = _div_ceil(input_size,self.get_chunk_size())
        
        if input_size != block_count * self.get_chunk_size():
            if block_count > 1:
                self.main_part_sum_function.prepared_call((block_count-1, 1),
                    i_data, o_data,part_sum_buf, self.get_chunk_size())
            self.tail_part_sum_function.prepared_call((1, 1), i_data,
                o_data,part_sum_buf,
                input_size - (block_count - 1) * self.get_chunk_size(), (block_count - 1))
        else:
            self.main_part_sum_function.prepared_call((block_count, 1),
                i_data, o_data,part_sum_buf,
                self.get_chunk_size())
                
        
    def call_uniform_add(self,input_size,i_data,o_data,part_sum_buf):       
      
        block_count = _div_ceil(input_size,self.get_chunk_size())       
      
        assert block_count > 1       
        
        if input_size != block_count * self.get_chunk_size():
            block_count -= 1
            if block_count > 1:
                self.main_uniform_sum_function.prepared_call((block_count-1, 1),
                    o_data, part_sum_buf, self.get_chunk_size())
            block_count += 1
            self.tail_uniform_sum_function.prepared_call((1, 1), o_data,part_sum_buf,
                input_size - (block_count - 1) * self.get_chunk_size(), (block_count - 1))
        else:
            block_count -= 1
            self.main_uniform_sum_function.prepared_call((block_count, 1),
                o_data, part_sum_buf,
                self.get_chunk_size())
        

    def __call__(self, *args, **kwargs):       
        
        i_data = kwargs.get('i_data')
        if i_data is None:
            i_data = args[0]
            
        o_data = kwargs.get('o_data')
        if o_data is None:
            o_data = args[1]
        
        n      = kwargs.get('n')
        if n is None:
            n = min(i_data.size,o_data.size)
            
        num_levels       = get_num_levels(n,self.get_chunk_size())                
        part_sum_buf_szs = [ get_num_chunks(n,self.get_chunk_size(),l) for l in range(1,num_levels) ]        
        part_sum_bufs    = [ driver.mem_alloc(sz*self.item_size) for sz in part_sum_buf_szs]        
        callargsets      = [ [n,i_data.gpudata,o_data.gpudata] ] + [ [sz,ps_buf,ps_buf] for sz,ps_buf in  zip(part_sum_buf_szs,part_sum_bufs)]
        
        for i,ps_buf in enumerate(part_sum_bufs):
          callargsets[i] += [ps_buf]
        
        for callargset in callargsets[0:-1]:
          self.call_intermediate(*callargset)
        
        self.call_final(*callargsets[-1])
        
        for callargset in reversed(callargsets[0:-1]):
          self.call_uniform_add(*callargset)
          
          
if __name__=='__main__':  
  from pycuda import driver, compiler, gpuarray, tools
  from scan   import *

  import numpy as np
  import pycuda.autoinit
  
  # sample usage for vector types and in generel arbitrary types. 
  # note:: size in bytes needs to be specified for non trivial types

  n = 1024*1024
                            
  i_data = gpuarray.empty([n,3],dtype=np.int32)

  i_data.fill(np.int32(1))

  preamble = """
  inline __device__ int3 operator+(int3 a, int3 b)
  {
      return make_int3(a.x + b.x, a.y + b.y, a.z + b.z);
  }
  """ 

  scan_kern = ExclusivePrefixKernel('int3','a+b','make_int3(0,0,0)',item_size=4*3,preamble=preamble,)

  print i_data.get()
          
  scan_kern(i_data,i_data,n=n)

  print i_data.get()

        
    
                      
_______________________________________________
PyCUDA mailing list
PyCUDA@tiker.net
http://lists.tiker.net/listinfo/pycuda

Reply via email to