Hello,
I am not sure if this problem related to pycuda gpuarray or
sickits.cuda library so I just posted in both mailing list maybe I can find
a solution about it.

my problem is that when I am trying to find a matrix transpose of matrix
which has mad up by concatenation by 2 matrices I'm getting wrong result.
To be more precises :

a1=np.array([[1,3,4,5],[7,4,8,2],[7,5,0,9]],np.float64)

temp=np.array([[3,4,5],[4,8,2],[5,0,9]],np.float64)

a2=r2=np.c_[np.array([1,7,7],np.float64),temp]

a1_gpu=gpuarray.to_gpu(a1)
a2_gpu=gpuarray.to_gpu(a2)


so far everything works fine and I have same value for all matrices.
a1=a1=a1_gpu=a2_gpu :

[ 1.,  3.,  4.,  5.]
[ 7.,  4.,  8.,  2.]
[ 7.,  5.,  0.,  9.]

but now

import scikits.cuda.linalg as la

np.all(la.transpose(a1_gpu).get())==a1.T)

returns True but but False for

np.all(la.transpose(a2_gpu).get())==a2.T)

my la.transpose(a2_gpu) :

[ 1.,  4.,  0.]
[ 7.,  5.,  5.]
[ 7.,  4.,  2.]
[ 3.,  8.,  9.]

by looking at a1 and la.transpose(a2_gpu) it looks like the problem is
somehow related to memory storage! I am right?

Do you have any idea?
Thanks in advance
_______________________________________________
PyCUDA mailing list
[email protected]
http://lists.tiker.net/listinfo/pycuda

Reply via email to