Hi! I've done a few sprite thingies in OpenGL here are some pointers:
Afaik display lists and VBO's can't bind different textures (?) per list/array. You can't animate lists by changing texcoords independently per element, so no go. VBO's have texture coords, but only one texture. Again, I'm no expert, might be wrong. With the quad aproach you should try to make the number of calls as few as possible. If you get rid of the push and translate for each sprite you'll get some extra speed. Try positioning each quads directly. The downside with sharing matrix over all sprites is the obvious lack of using OpenGL transformations, but some vector math aplied to the quads has been faster for me than having one transformed matrix per quad. Since I haven't been able to animate a list/vbo with independent textures and texture coords for each element/buffer object I've only used it for backdrops. The speed increase is tremendous. I also partition the elements so only one list/vbo is displayed per visible section, if you're screen display is smaller than the entire scene, this helps even more. If you put all your sprites and their animation frames into one big texture you could use VBO's, but I've never had the tenacity to try that aproach. Another way to increase speed is to write an opengl rendering engine in C and call and make it available as a Python extension. This is a major speed boost, in particular for a large number of iterations. Iirc PyOpenGL bindings are generated, many times this is suboptimal code for what you're trying to do, writing the Python extension in C manually have been faster for me many times. This is indeed true if you put your iterations inside a C loop instead of calling the C function from Python many times. In any case, still waiting for that OO 2D game engine with tons of OpenGL features and effects, including simple things like frame animation, LERP-like features and a simple 2D scenegraph. No luck yet, all attempts I've tried so far lack at least one "must have" feature. :) /Peter On 2009-02-26 (Thu) 11:29, Casey Duncan wrote: > Immediate mode calls (glVertex et al) are the very slowest way to use > OpenGL. In fact they are deprecated in OpenGL 3.0 and will eventually be > removed. > > The display list is better as you discovered, but you still are making a > few OpenGL state changes per sprite, which is likely slowing you down. > Also there is some overhead for the display list call, which makes them > sub-optimal for just drawing a single quad. > >> glPushMatrix() >> glTranslate(self.positionx,self.positiony,0) >> glCallList(self.displist) >> glPopMatrix() > > You really need to batch the quads up into a few vertex arrays or vbos > to stream them to the card in one go. pyglet has a high-level python > sprite api that automates this for you fwiw. > > -Casey > > On Feb 26, 2009, at 11:04 AM, Zack Schilling wrote: > >> I know the PyOpenGL mailing list might be a better place to ask this >> question, but I've had a lot of luck talking to the experienced people >> here so I figured I'd try it first. >> >> I'm trying to migrate a game I created from using the Pygame / SDL >> software rendering to OpenGL. Before attempting the massive and >> complex conversion involved with moving the whole game, I decided to >> make a little test program while I learned OpenGL. >> >> In this test, I set up OpenGL to work in 2D and began loading images >> into texture objects and drawing textured quads as sprites. I created a >> little glSprite class to handle the drawing and translation. At first >> its draw routine looked like this: >> >> glPushMatrix() >> glTranslate(self.positionx,self.positiony,0) >> glBindTexture(GL_TEXTURE_2D, self.texture) >> glBegin(GL_QUADS) >> glTexCoord2f(0, 1) >> glVertex2f(0, 0) >> glTexCoord2f(1, 1) >> glVertex2f(w, 0) >> glTexCoord2f(1, 0) >> glVertex2f(w, h) >> glTexCoord2f(0, 0) >> glVertex2f(0, h) >> glEnd() >> glPopMatrix() >> >> Note: self.texture is a texture ID of a loaded OpenGL texture object. >> My sprite class keeps a dictionary cache and only loads the sprite's >> image into a texture if it needs to. >> >> I'd get maybe 200 identical sprites (same texture) onscreen and my CPU >> would hit 100% load from Python execution. I looked into what could be >> causing this and found out that it's probably function call overhead. >> That's 14 external library function calls per sprite draw. >> >> The next thing I tried was to create a display list at each sprite's >> initialization. Then my code looked like this: >> glPushMatrix() >> glTranslate(self.positionx,self.positiony,0) >> glCallList(self.displist) >> glPopMatrix() >> >> Well, that's nice, down to 4 calls per draw. I was able to push ~500 >> sprites per frame using this method before the CPU tapped out. I need >> more speed than this. My game logic uses 30-40% of the CPU alone and >> I'd like to push at least 1000 sprites. What can I do? I've looked into >> passing sprites as a matrix with vertex arrays, but forming a proper >> vertex array with numpy can sometimes be more trouble than it's worth. >> Plus, I can't swap out textures easily mid-draw, so it makes things >> much more complex than the simple way I'm doing things now. >> >> Is there any design pattern I could follow that will get me more speed >> without sending me off the deep end with complexity. >> >> Thanks, >> >> Zack