Author: Hakan Ardo <[email protected]>
Branch: extradoc
Changeset: r4578:7ccd112ce9cb
Date: 2012-08-15 09:23 +0200
http://bitbucket.org/pypy/extradoc/changeset/7ccd112ce9cb/

Log:    preliminary results

diff --git a/talk/iwtc11/benchmarks/result.txt 
b/talk/iwtc11/benchmarks/result.txt
--- a/talk/iwtc11/benchmarks/result.txt
+++ b/talk/iwtc11/benchmarks/result.txt
@@ -1,129 +1,189 @@
 
 pypy
-sqrt(float):   1.20290899277
-  sqrt(int):   2.41840982437
-sqrt(Fix16):   6.10620713234
-conv3(1e8):    2.5192759037
-conv5(1e8):    2.89429306984
-conv3(1e6):    0.828789949417
-conv5(1e6):    1.01669406891
-conv3(1e5):    0.777491092682
-conv5(1e5):    0.971807956696
-conv3x3(3):    0.653658866882
-conv3x3(1000): 0.748742103577
-dilate3x3(1000): 4.8826611042
-NoBorderImagePadded: 2.31043601036
-NoBorderImagePadded(iter): 0.572638988495
-NoBorderImagePadded(range): 0.494098186493
-NoBorderImage: 2.90333104134
-NoBorderImage(iter): 2.06943392754
-NoBorderImage(range): 1.99161696434
-sobel(NoBorderImagePadded): 0.668392896652
+sqrt(int): 3.9497149229 +- 0.00120169176702
+sqrt(float): 1.18568074703 +- 0.000155574177096
+sqrt(Fix16): 4.33989310265 +- 0.00141233338935
+conv3(array(1e6)): 0.509183955193 +- 0.0118453357313
+conv5(array(1e6)): 0.69121158123 +- 0.00750138546764
+conv3(array(1e5)): 0.4399548769 +- 0.00179808936191
+conv5(array(1e5)): 0.641533112526 +- 0.00283121562299
+conv3x3(Array2D(1000000x3)): 0.32311899662 +- 0.00297940582696
+conv3x3(Array2D(1000x1000)): 0.294556212425 +- 0.00394363604342
+dilate3x3(Array2D(1000x1000)): 5.62028222084 +- 0.0100742850395
+sobel(Array2D(1000x1000)): 0.353349781036 +- 0.000422230713013
+SOR(100, 32768): 3.6967458725 +- 0.00479411350316
+SOR(1000, 256): 2.92602846622 +- 0.00460152567878
+SOR(100, 32768): 5.91232867241 +- 0.0575417343725
+SOR(1000, 256): 4.48931508064 +- 0.0545822457385
+SparseMatMult(1000, 5000, 262144): 45.573383832 +- 0.628020354674
+SparseMatMult(100000, 1000000, 1024): 31.8840100527 +- 0.0835424264131
+MonteCarlo(268435456): 18.0108832598 +- 0.0590538416431
+LU(100, 4096): 17.11741395 +- 0.146651016873
+LU(1000, 2): 8.36587500572 +- 0.0643368943091
 
-pypy --jit enable_opts=intbounds:rewrite:virtualize:heap:unroll
-sqrt(float):   1.19338798523
-  sqrt(int):   2.42711806297
-sqrt(Fix16):   6.12403416634
-conv3(1e8):    2.06937193871
-conv5(1e8):    2.26879811287
-conv3(1e6):    0.837247848511
-conv5(1e6):    1.02573990822
-conv3(1e5):    0.779927015305
-conv5(1e5):    0.975258827209
-conv3x3(3):    0.663229942322
-conv3x3(1000): 0.763913154602
-dilate3x3(1000): 4.80735611916
-NoBorderImagePadded: 2.33380198479
-NoBorderImagePadded(iter): 0.504709005356
-NoBorderImagePadded(range): 0.503198862076
-NoBorderImage: 2.93766593933
-NoBorderImage(iter): 2.04195189476
-NoBorderImage(range): 2.02779984474
-sobel(NoBorderImagePadded): 0.670017004013
+pypy --jit 
enable_opts=intbounds:rewrite:virtualize:string:earlyforce:pure:heap:ffi
+sqrt(int): 5.38412702084 +- 0.0100677718267
+sqrt(float): 2.49882881641 +- 0.000611829128708
+sqrt(Fix16): 9.08926799297 +- 0.00638996685205
+conv3(array(1e6)): 2.07706921101 +- 0.0578137268002
+conv5(array(1e6)): 2.29385373592 +- 0.239051363255
+conv3(array(1e5)): 1.9695744276 +- 0.00699373341986
+conv5(array(1e5)): 2.06334021091 +- 0.00461312422073
+conv3x3(Array2D(1000000x3)): 0.913360571861 +- 0.00406856919645
+conv3x3(Array2D(1000x1000)): 0.906745815277 +- 0.011800811341
+dilate3x3(Array2D(1000x1000)): 5.94119987488 +- 0.0177689080267
+sobel(Array2D(1000x1000)): 0.879287624359 +- 0.00351199656947
+SOR(100, 32768): 13.3457442522 +- 0.15597493782
+SOR(1000, 256): 10.6485268593 +- 0.0335292228831
+SOR(100, 32768): 15.2722632885 +- 0.149270948773
+SOR(1000, 256): 12.2542063951 +- 0.0467913588079
+SparseMatMult(1000, 5000, 262144): 51.7010503292 +- 0.0900830635215
+SparseMatMult(100000, 1000000, 1024): 34.0754101276 +- 0.0854521241748
+MonteCarlo(268435456): 27.4164168119 +- 0.00974970184296
+LU(100, 4096): 48.2948143244 +- 0.509639206256
+LU(1000, 2): 24.4584824085 +- 0.0807806236077
 
-pypy --jit enable_opts=intbounds:rewrite:virtualize:heap
-sqrt(float):   1.69957995415
-  sqrt(int):   3.13235807419
-sqrt(Fix16):   10.325592041
-conv3(1e8):    2.997631073
-conv5(1e8):    3.13820099831
-conv3(1e6):    1.7843170166
-conv5(1e6):    1.94643998146
-conv3(1e5):    1.75876712799
-conv5(1e5):    1.96709895134
-conv3x3(3):    1.09958791733
-conv3x3(1000): 1.02993702888
-dilate3x3(1000): 5.22873902321
-NoBorderImagePadded: 2.45174002647
-NoBorderImagePadded(iter): 1.60747289658
-NoBorderImagePadded(range): 1.55282211304
-NoBorderImage: 2.91020989418
-NoBorderImage(iter): 1.97922706604
-NoBorderImage(range): 2.14161992073
-sobel(NoBorderImagePadded): 1.47591900826
+pypy-1.5
+sqrt(int): 4.01375324726 +- 0.0011476694851
+sqrt(float): 1.18687217236 +- 0.000301798978394
+sqrt(Fix16): 4.86933817863 +- 0.00205854686543
+conv3(array(1e6)): 0.805051374435 +- 0.0063356172758
+conv5(array(1e6)): 1.06881151199 +- 0.166557589133
+conv3(array(1e5)): 0.767954874039 +- 0.00310620949945
+conv5(array(1e5)): 0.965079665184 +- 0.000806628058215
+conv3x3(Array2D(1000000x3)): 0.335144019127 +- 0.00049856745349
+conv3x3(Array2D(1000x1000)): 0.29465200901 +- 0.000517387744409
+dilate3x3(Array2D(1000x1000)): 4.75037336349 +- 0.0580217877578
+sobel(Array2D(1000x1000)): 0.663321614265 +- 0.122793251782
+SOR(100, 32768): 4.81084053516 +- 0.00994169505717
+SOR(1000, 256): 3.69062592983 +- 0.000879615350989
+SparseMatMult(1000, 5000, 262144): 29.4872629166 +- 0.10046773485
+SparseMatMult(100000, 1000000, 1024): 16.4197937727 +- 0.0719696247072
+MonteCarlo(268435456): 33.0701499462 +- 0.0638672466435
 
-gcc
-sqrt(float):   1.43
-sqrt(int):     1.93
-sqrt(Fix16):   2.04
-conv3(1e8):     2.03
-conv5(1e8):     2.39
-conv3(1e6):     1.66
-conv5(1e6):     2.03
-conv3(1e5):     1.60
-conv5(1e5):     2.02
-conv3x3(3):  1.81
-conv3x3(1000):  1.79
-dilate3x3(1000):  3.26
-sobel_magnitude:  1.37
+pypy-1.5 --jit enable_opts=intbounds:rewrite:virtualize:heap
+sqrt(int): 4.90680310726 +- 0.0163989281435
+sqrt(float): 1.76404910088 +- 0.019897073087
+sqrt(Fix16): 9.64484581947 +- 0.114181653484
+conv3(array(1e6)): 2.09028859138 +- 0.0553368910699
+conv5(array(1e6)): 1.98986980915 +- 0.0147589410577
+conv3(array(1e5)): 2.03130574226 +- 0.0153185288294
+conv5(array(1e5)): 1.95361895561 +- 0.00846210060946
+conv3x3(Array2D(1000000x3)): 0.771404409409 +- 0.00438046479707
+conv3x3(Array2D(1000x1000)): 0.724743962288 +- 0.00330094765836
+dilate3x3(Array2D(1000x1000)): 4.96963682175 +- 0.00698590266664
+sobel(Array2D(1000x1000)): 1.63008458614 +- 1.3629432655
+SOR(100, 32768): 13.871041584 +- 0.0322488434431
+SOR(1000, 256): 11.9500208616 +- 0.00961527429654
+SparseMatMult(1000, 5000, 262144): 37.7395636082 +- 0.108390387625
+SparseMatMult(100000, 1000000, 1024): 27.7381374121 +- 0.105548816891
+MonteCarlo(268435456): 30.6472777128 +- 0.0437974003055
 
-gcc -O2
-sqrt(float):   1.15
-sqrt(int):     1.86
-sqrt(Fix16):   1.89
-conv3(1e8):     1.22
-conv5(1e8):     1.37
-conv3(1e6):     1.00
-conv5(1e6):     1.04
-conv3(1e5):     0.81
-conv5(1e5):     0.97
-conv3x3(3):  0.25
-conv3x3(1000):  0.23
-dilate3x3(1000):  0.27
-sobel_magnitude:  0.25
-
-gcc -O3 -march=native
-sqrt(float):   1.15
-sqrt(int):     1.82
-sqrt(Fix16):   1.89
-conv3(1e8):     1.12
-conv5(1e8):     1.16
-conv3(1e6):     0.96
-conv5(1e6):     0.97
-conv3(1e5):     0.66
-conv5(1e5):     0.75
-conv3x3(3):  0.23
-conv3x3(1000):  0.21
-dilate3x3(1000):  0.26
-sobel_magnitude:  0.25
+gcc -O3 -march=native -fno-tree-vectorize
+sqrt(float): 1.14 +- 0.0
+sqrt(int): 1.85 +- 0.0
+sqrt(Fix16): 1.992 +- 0.004472135955
+conv3(1e6): 1.066 +- 0.00547722557505
+conv5(1e6): 1.104 +- 0.00547722557505
+conv3(1e5): 0.75 +- 0.0
+conv5(1e5): 1.03 +- 0.0
+conv3x3(3): 0.22 +- 3.10316769156e-17
+conv3x3(1000): 0.2 +- 0.0
+dilate3x3(1000): 0.2 +- 0.0
+SOR(100,32768): 2.506 +- 0.00547722557505
+SOR(1000,256): 2.072 +- 0.004472135955
+SparseMatMult(1000,5000,262144): 2.54 +- 0.0
+SparseMatMult(100000,1000000,1024): 2.398 +- 0.004472135955
+MonteCarlo(268435456): 2.52 +- 0.0
+LU(100,4096): 1.882 +- 0.004472135955
+LU(1000,2): 2.036 +- 0.00547722557505
 
 python2.7
-sqrt(float):   34.9008591175
-  sqrt(int):   19.6919620037
-sqrt(Fix16):   966.111785889
-conv3(1e8):    69.0758299828
-conv5(1e8):    101.503945827
-conv3(1e6):    62.212736845
-conv5(1e6):    93.5375850201
-conv3(1e5):    61.4343979359
-conv5(1e5):    93.6144771576
-conv3x3(3):    198.12590003
-conv3x3(1000): 193.030704975
-dilate3x3(1000): 192.323596954
-NoBorderImagePadded: 512.473811865
-NoBorderImagePadded(iter): 503.393321991
-NoBorderImagePadded(range): 493.907886028
-NoBorderImage: 501.37309289
-NoBorderImage(iter): 495.473101139
-NoBorderImage(range): 493.572232008
-sobel(NoBorderImagePadded): 433.678281069
+sqrt(int): 15.5302910805
+sqrt(float): 19.8081839085
+sqrt(Fix16): 690.281599045
+conv3(array(1e6)): 58.9430649281
+conv5(array(1e6)): 88.9902608395
+conv3(array(1e5)): 60.0520131588
+conv5(array(1e5)): 88.7499320507
+conv3x3(Array2D(1000000x3)): 182.564875841
+conv3x3(Array2D(1000x1000)): 179.802839994
+dilate3x3(Array2D(1000x1000)): 177.197051048
+sobel(Array2D(1000x1000)): 132.991428852
+SOR(100, 32768): 1854.50835085
+SOR(1000, 256): 1506.28460383
+SOR(100, 32768): 1279.75841594
+SOR(1000, 256): 1038.63221002
+SparseMatMult(1000, 5000, 262144): 456.105548859
+SparseMatMult(100000, 1000000, 1024): 272.003329039
+MonteCarlo(268435456): 800.114681005
+LU(100, 4096): 2704.15891314
+LU(1000, 2): 1317.06345105
+
+python2.6 psyco-wrapper.py
+
+luajit-2.0.0-beta10
+sqrt(int): 1.185000 +- 0.005270
+sqrt(float): 1.185000 +- 0.005270
+sqrt(Fix16): 106.936000 +- 0.350213
+convolution(conv3): 0.476000 +- 0.005164
+convolution(conv5): 0.478000 +- 0.012293
+convolution(conv3): 0.172000 +- 0.006325
+convolution(conv5): 0.286000 +- 0.005164
+convolution(conv3x3): 0.207000 +- 0.004830
+convolution(conv3x3): 0.167000 +- 0.006749
+convolution(dilate3x3): 0.165000 +- 0.005270
+convolution(sobel_magnitude): 0.398000 +- 0.006325
+SOR(100, 32768): 2.186000 +- 0.005164
+SOR(1000, 256): 1.797000 +- 0.006749
+SparseMatMult(1000,5000,262144): 6.642000 +- 0.049621
+SparseMatMult(100000,1000000,1024): 3.846000 +- 0.023664
+MonteCarlo(268435456): 4.082000 +- 0.004216
+LU(100, 4096): 2.371000 +- 0.019120
+LU(1000, 2): 2.141000 +- 0.037550
+FFT(1024, 32768): 3.900000 +- 0.010541
+FFT(1048576, 2): 2.815000 +- 0.142848
+
+luajit-2.0.0-beta10 -O-loop
+sqrt(int): 1.462000 +- 0.004216
+sqrt(float): 1.462000 +- 0.004216
+sqrt(Fix16): 102.775000 +- 0.332106
+convolution(conv3): 0.950000 +- 0.006667
+convolution(conv5): 1.219000 +- 0.077093
+convolution(conv3): 0.894000 +- 0.005164
+convolution(conv5): 1.150000 +- 0.004714
+convolution(conv3x3): 0.734000 +- 0.005164
+convolution(conv3x3): 0.691000 +- 0.007379
+convolution(dilate3x3): 0.710000 +- 0.012472
+convolution(sobel_magnitude): 0.833000 +- 0.009487
+SOR(100, 32768): 2.727000 +- 0.004830
+SOR(1000, 256): 2.264000 +- 0.005164
+SparseMatMult(1000,5000,262144): 13.485000 +- 0.235384
+SparseMatMult(100000,1000000,1024): 10.869000 +- 0.014491
+MonteCarlo(268435456): 5.943000 +- 0.006749
+LU(100, 4096): 11.064000 +- 0.019551
+LU(1000, 2): 5.109000 +- 0.005676
+FFT(1024, 32768): 5.999000 +- 0.007379
+FFT(1048576, 2): 2.997000 +- 0.137602
+
+luajit-master
+sqrt(int): 1.185000 +- 0.005270
+sqrt(float): 1.185000 +- 0.005270
+sqrt(Fix16): 1.739000 +- 0.003162
+convolution(conv3): 0.477000 +- 0.008233
+convolution(conv5): 0.474000 +- 0.005164
+convolution(conv3): 0.165000 +- 0.005270
+convolution(conv5): 0.286000 +- 0.005164
+convolution(conv3x3): 0.207000 +- 0.004830
+convolution(conv3x3): 0.167000 +- 0.006749
+convolution(dilate3x3): 0.163000 +- 0.006749
+convolution(sobel_magnitude): 0.403000 +- 0.009487
+SOR(100, 32768): 2.187000 +- 0.006749
+SOR(1000, 256): 1.802000 +- 0.006325
+SparseMatMult(1000,5000,262144): 6.683000 +- 0.029833
+SparseMatMult(100000,1000000,1024): 3.870000 +- 0.037712
+MonteCarlo(268435456): 4.035000 +- 0.005270
+LU(100, 4096): 2.351000 +- 0.008756
+LU(1000, 2): 2.107000 +- 0.018288
+FFT(1024, 32768): 3.926000 +- 0.010750
+FFT(1048576, 2): 2.865000 +- 0.064334
diff --git a/talk/iwtc11/benchmarks/runall.sh b/talk/iwtc11/benchmarks/runall.sh
--- a/talk/iwtc11/benchmarks/runall.sh
+++ b/talk/iwtc11/benchmarks/runall.sh
@@ -12,4 +12,5 @@
 ./benchmark.sh python2.6 psyco-wrapper.py
 ./benchmark.sh luajit-2.0.0-beta10
 ./benchmark.sh luajit-2.0.0-beta10 -O-loop
-./benchmakr.sh luajit
+./benchmark.sh luajit-master
+./benchmark.sh luajit
_______________________________________________
pypy-commit mailing list
[email protected]
http://mail.python.org/mailman/listinfo/pypy-commit

Reply via email to