Author: Maciej Fijalkowski <[email protected]>
Branch:
Changeset: r74627:7b11194ab1d4
Date: 2014-11-21 09:02 +0200
http://bitbucket.org/pypy/pypy/changeset/7b11194ab1d4/
Log: Kill obmalloc. Shockingly everything nicely passes
diff --git a/rpython/translator/c/genc.py b/rpython/translator/c/genc.py
--- a/rpython/translator/c/genc.py
+++ b/rpython/translator/c/genc.py
@@ -405,8 +405,6 @@
('debug', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT"
debug_target'),
('debug_exc', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT
-DDO_LOG_EXC" debug_target'),
('debug_mem', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT
-DPYPY_USE_TRIVIAL_MALLOC" debug_target'),
- ('no_obmalloc', '', '$(MAKE) CFLAGS="-g -O2 -DRPY_ASSERT
-DPYPY_NO_OBMALLOC" $(TARGET)'),
- ('linuxmemchk', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT
-DPYPY_USE_LINUXMEMCHK" debug_target'),
('llsafer', '', '$(MAKE) CFLAGS="-O2 -DRPY_LL_ASSERT" $(TARGET)'),
('lldebug', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT
-DRPY_LL_ASSERT" debug_target'),
('lldebug0','', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -O0 -DRPY_ASSERT
-DRPY_LL_ASSERT" debug_target'),
@@ -762,7 +760,6 @@
srcdir = py.path.local(__file__).join('..', 'src')
files = [
srcdir / 'entrypoint.c', # ifdef PYPY_STANDALONE
- srcdir / 'allocator.c', # ifdef PYPY_STANDALONE
srcdir / 'mem.c',
srcdir / 'exception.c',
srcdir / 'rtyper.c', # ifdef HAVE_RTYPER
diff --git a/rpython/translator/c/src/allocator.c
b/rpython/translator/c/src/allocator.c
deleted file mode 100644
--- a/rpython/translator/c/src/allocator.c
+++ /dev/null
@@ -1,33 +0,0 @@
-/* allocation functions */
-#include "common_header.h"
-#ifdef PYPY_STANDALONE
-#include <stdlib.h>
-
-#if defined(PYPY_USE_TRIVIAL_MALLOC)
- void *PyObject_Malloc(size_t n) { return malloc(n); }
- void *PyObject_Realloc(void *p, size_t n) { return realloc(p, n); }
- void PyObject_Free(void *p) { if (p) { *((int*)p) = 0xDDDDDDDD; } free(p); }
-
-#elif defined(PYPY_USE_LINUXMEMCHK)
-# include "linuxmemchk.c"
-
-#elif defined(PYPY_NO_OBMALLOC)
- void *PyObject_Malloc(size_t n) { return malloc(n); }
- void *PyObject_Realloc(void *p, size_t n) { return realloc(p, n); }
- void PyObject_Free(void *p) { free(p); }
-
-#else
-# ifndef WITH_PYMALLOC
-# define WITH_PYMALLOC
-# endif
-/* The same obmalloc as CPython */
-# include "src/obmalloc.c"
-
-#endif
-#elif defined _MSC_VER
-/* link will fail without some kind of definition for the functions */
- void *PyObject_Malloc(size_t n) { return NULL; }
- void *PyObject_Realloc(void *p, size_t n) { return NULL; }
- void PyObject_Free(void *p) { }
-
-#endif /* PYPY_STANDALONE */
diff --git a/rpython/translator/c/src/allocator.h
b/rpython/translator/c/src/allocator.h
deleted file mode 100644
--- a/rpython/translator/c/src/allocator.h
+++ /dev/null
@@ -1,4 +0,0 @@
-/* allocation functions prototypes */
-RPY_EXTERN void *PyObject_Malloc(size_t n);
-RPY_EXTERN void *PyObject_Realloc(void *p, size_t n);
-RPY_EXTERN void PyObject_Free(void *p);
diff --git a/rpython/translator/c/src/g_include.h
b/rpython/translator/c/src/g_include.h
--- a/rpython/translator/c/src/g_include.h
+++ b/rpython/translator/c/src/g_include.h
@@ -33,7 +33,6 @@
# include "src/debug_traceback.h"
#endif
-# include "src/allocator.h"
#ifdef PYPY_STANDALONE
# include "src/entrypoint.h"
#endif
diff --git a/rpython/translator/c/src/linuxmemchk.c
b/rpython/translator/c/src/linuxmemchk.c
deleted file mode 100644
--- a/rpython/translator/c/src/linuxmemchk.c
+++ /dev/null
@@ -1,101 +0,0 @@
-/* custom checking allocators a la Electric Fence */
-#include <stdlib.h>
-#include <stdio.h>
-#include <sys/mman.h>
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#define PAGESIZE 4096
-#ifndef MALLOC_BIGBUFFER
-# define MALLOC_BIGBUFFER (PAGESIZE*32768) /* 128MB */
-#endif
-
-
-struct _alloc_s {
- void* ptr;
- int npages;
-};
-static void* _na_start = NULL;
-static char* _na_cur;
-
-static void _na_assert(int x, char* msg)
-{
- if (!x)
- {
- fprintf(stderr, "linuxmemchk: failed assertion: %s\n", msg);
- abort();
- }
-}
-
-static struct _alloc_s* _na_find(void* data)
-{
- int err;
- long data1;
- struct _alloc_s* s;
- _na_assert(_na_start+PAGESIZE <= data &&
- data < _na_start+MALLOC_BIGBUFFER-PAGESIZE,
- "corrupted na_start");
- data1 = (long) data;
- data1 &= ~(PAGESIZE-1);
- data1 -= PAGESIZE;
- err = mprotect((void*) data1, PAGESIZE, PROT_READ|PROT_WRITE);
- _na_assert(!err, "mprotect[1] failed");
- s = (struct _alloc_s*) data1;
- _na_assert(s->npages > 0, "corrupted s->npages");
- return s;
-}
-
-void* PyObject_Malloc(size_t size)
-{
- int err, npages = (size + PAGESIZE-1) / PAGESIZE + 1;
- struct _alloc_s* s;
- char* data;
- if (_na_start == NULL)
- {
- _na_start = mmap(NULL, MALLOC_BIGBUFFER, PROT_NONE,
- MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
- _na_assert(_na_start != MAP_FAILED, "initial mmap failed");
- _na_cur = (char*) _na_start;
- }
- s = (struct _alloc_s*) _na_cur;
- _na_cur += npages * PAGESIZE;
- if (_na_cur >= ((char*) _na_start) + MALLOC_BIGBUFFER)
- {
- fprintf(stderr, "linuxmemchk.c: Nothing wrong so far, but we are running
out\nlinuxmemchk.c: of mmap'ed memory. Increase MALLOC_BIGBUFFER.\n");
- abort();
- }
- err = mprotect(s, npages * PAGESIZE, PROT_READ|PROT_WRITE|PROT_EXEC);
- _na_assert(!err, "mprotect[2] failed");
- s->ptr = data = _na_cur - /*((size+3)&~3)*/ size;
- s->npages = npages;
- err = mprotect(s, PAGESIZE, PROT_NONE);
- _na_assert(!err, "mprotect[3] failed");
- return data;
-}
-
-void PyObject_Free(void* data)
-{
- int err, npages;
- struct _alloc_s* s;
- if (data == NULL)
- return;
- s = _na_find(data);
- _na_assert(s->ptr == data, "free got a pointer not returned by malloc");
- npages = s->npages;
- s->npages = 0;
- err = mprotect(s, npages * PAGESIZE, PROT_NONE);
- _na_assert(!err, "mprotect[4] failed");
-}
-
-void* PyObject_Realloc(void* data, size_t nsize)
-{
- size_t size;
- struct _alloc_s* s = _na_find(data);
- void* ndata = PyObject_Malloc(nsize);
-
- _na_assert(s->ptr == data, "realloc got a pointer not returned by malloc");
- size = ((char*)s) + s->npages * PAGESIZE - (char*)data;
- memcpy(ndata, data, size<nsize ? size : nsize);
- PyObject_Free(data);
- return ndata;
-}
diff --git a/rpython/translator/c/src/mem.h b/rpython/translator/c/src/mem.h
--- a/rpython/translator/c/src/mem.h
+++ b/rpython/translator/c/src/mem.h
@@ -9,13 +9,13 @@
#define OP_RAW_MALLOC(size, r, restype) { \
- r = (restype) PyObject_Malloc(size); \
+ r = (restype) malloc(size); \
if (r != NULL) { \
COUNT_MALLOC; \
} \
}
-#define OP_RAW_FREE(p, r) PyObject_Free(p); COUNT_FREE;
+#define OP_RAW_FREE(p, r) free(p); COUNT_FREE;
#define OP_RAW_MEMCLEAR(p, size, r) memset((void*)p, 0, size)
#define OP_RAW_MEMSET(p, byte, size, r) memset((void*)p, byte, size)
diff --git a/rpython/translator/c/src/obmalloc.c
b/rpython/translator/c/src/obmalloc.c
deleted file mode 100644
--- a/rpython/translator/c/src/obmalloc.c
+++ /dev/null
@@ -1,1418 +0,0 @@
-
-#ifdef WITH_PYMALLOC
-
-#include <string.h>
-#include <assert.h>
-
-/* An object allocator for Python.
-
- Here is an introduction to the layers of the Python memory architecture,
- showing where the object allocator is actually used (layer +2), It is
- called for every object allocation and deallocation (PyObject_New/Del),
- unless the object-specific allocators implement a proprietary allocation
- scheme (ex.: ints use a simple free list). This is also the place where
- the cyclic garbage collector operates selectively on container objects.
-
-
- Object-specific allocators
- _____ ______ ______ ________
- [ int ] [ dict ] [ list ] ... [ string ] Python core |
-+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
- _______________________________ | |
- [ Python's object allocator ] | |
-+2 | ####### Object memory ####### | <------ Internal buffers ------> |
- ______________________________________________________________ |
- [ Python's raw memory allocator (PyMem_ API) ] |
-+1 | <----- Python memory (under PyMem manager's control) ------> | |
- __________________________________________________________________
- [ Underlying general-purpose allocator (ex: C library malloc) ]
- 0 | <------ Virtual memory allocated for the python process -------> |
-
- =========================================================================
- _______________________________________________________________________
- [ OS-specific Virtual Memory Manager (VMM) ]
--1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
- __________________________________ __________________________________
- [ ] [ ]
--2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
-
-*/
-/*==========================================================================*/
-
-/* A fast, special-purpose memory allocator for small blocks, to be used
- on top of a general-purpose malloc -- heavily based on previous art. */
-
-/* Vladimir Marangozov -- August 2000 */
-
-/*
- * "Memory management is where the rubber meets the road -- if we do the wrong
- * thing at any level, the results will not be good. And if we don't make the
- * levels work well together, we are in serious trouble." (1)
- *
- * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
- * "Dynamic Storage Allocation: A Survey and Critical Review",
- * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
- */
-
-/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
-
-/*==========================================================================*/
-
-/*
- * Allocation strategy abstract:
- *
- * For small requests, the allocator sub-allocates <Big> blocks of memory.
- * Requests greater than 256 bytes are routed to the system's allocator.
- *
- * Small requests are grouped in size classes spaced 8 bytes apart, due
- * to the required valid alignment of the returned address. Requests of
- * a particular size are serviced from memory pools of 4K (one VMM page).
- * Pools are fragmented on demand and contain free lists of blocks of one
- * particular size class. In other words, there is a fixed-size allocator
- * for each size class. Free pools are shared by the different allocators
- * thus minimizing the space reserved for a particular size class.
- *
- * This allocation strategy is a variant of what is known as "simple
- * segregated storage based on array of free lists". The main drawback of
- * simple segregated storage is that we might end up with lot of reserved
- * memory for the different free lists, which degenerate in time. To avoid
- * this, we partition each free list in pools and we share dynamically the
- * reserved space between all free lists. This technique is quite efficient
- * for memory intensive programs which allocate mainly small-sized blocks.
- *
- * For small requests we have the following table:
- *
- * Request in bytes Size of allocated block Size class idx
- * ----------------------------------------------------------------
- * 1-8 8 0
- * 9-16 16 1
- * 17-24 24 2
- * 25-32 32 3
- * 33-40 40 4
- * 41-48 48 5
- * 49-56 56 6
- * 57-64 64 7
- * 65-72 72 8
- * ... ... ...
- * 241-248 248 30
- * 249-256 256 31
- *
- * 0, 257 and up: routed to the underlying allocator.
- */
-
-/*==========================================================================*/
-
-/*
- * -- Main tunable settings section --
- */
-
-/*
- * Alignment of addresses returned to the user. 8-bytes alignment works
- * on most current architectures (with 32-bit or 64-bit address busses).
- * The alignment value is also used for grouping small requests in size
- * classes spaced ALIGNMENT bytes apart.
- *
- * You shouldn't change this unless you know what you are doing.
- */
-#define ALIGNMENT 8 /* must be 2^N */
-#define ALIGNMENT_SHIFT 3
-#define ALIGNMENT_MASK (ALIGNMENT - 1)
-
-/* Return the number of bytes in size class I, as a uint. */
-#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
-
-/*
- * Max size threshold below which malloc requests are considered to be
- * small enough in order to use preallocated memory pools. You can tune
- * this value according to your application behaviour and memory needs.
- *
- * The following invariants must hold:
- * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
- * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
- *
- * Although not required, for better performance and space efficiency,
- * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
- */
-#define SMALL_REQUEST_THRESHOLD 256
-#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
-
-/*
- * The system's VMM page size can be obtained on most unices with a
- * getpagesize() call or deduced from various header files. To make
- * things simpler, we assume that it is 4K, which is OK for most systems.
- * It is probably better if this is the native page size, but it doesn't
- * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
- * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
- * violation fault. 4K is apparently OK for all the platforms that python
- * currently targets.
- */
-#define SYSTEM_PAGE_SIZE (4 * 1024)
-#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
-
-/*
- * Maximum amount of memory managed by the allocator for small requests.
- */
-#ifdef WITH_MEMORY_LIMITS
-#ifndef SMALL_MEMORY_LIMIT
-#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
-#endif
-#endif
-
-/*
- * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
- * on a page boundary. This is a reserved virtual address space for the
- * current process (obtained through a malloc call). In no way this means
- * that the memory arenas will be used entirely. A malloc(<Big>) is usually
- * an address range reservation for <Big> bytes, unless all pages within this
- * space are referenced subsequently. So malloc'ing big blocks and not using
- * them does not mean "wasting memory". It's an addressable range wastage...
- *
- * Therefore, allocating arenas with malloc is not optimal, because there is
- * some address space wastage, but this is the most portable way to request
- * memory from the system across various platforms.
- */
-#define ARENA_SIZE (256 << 10) /* 256KB */
-
-#ifdef WITH_MEMORY_LIMITS
-#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
-#endif
-
-/*
- * Size of the pools used for small blocks. Should be a power of 2,
- * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
- */
-#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
-#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
-
-/*
- * -- End of tunable settings section --
- */
-
-/*==========================================================================*/
-
-/*
- * Locking
- *
- * To reduce lock contention, it would probably be better to refine the
- * crude function locking with per size class locking. I'm not positive
- * however, whether it's worth switching to such locking policy because
- * of the performance penalty it might introduce.
- *
- * The following macros describe the simplest (should also be the fastest)
- * lock object on a particular platform and the init/fini/lock/unlock
- * operations on it. The locks defined here are not expected to be recursive
- * because it is assumed that they will always be called in the order:
- * INIT, [LOCK, UNLOCK]*, FINI.
- */
-
-/*
- * Python's threads are serialized, so object malloc locking is disabled.
- */
-#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
-#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
-#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
-#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
-#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
-
-/*
- * Basic types
- * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
- */
-#undef uchar
-#define uchar unsigned char /* assuming == 8 bits */
-
-#undef uint
-#define uint unsigned int /* assuming >= 16 bits */
-
-#undef ulong
-#define ulong Unsigned /* assuming >= 32 bits */
-
-#undef uptr
-#define uptr Unsigned
-
-/* When you say memory, my mind reasons in terms of (pointers to) blocks */
-typedef uchar block;
-
-/* Pool for small blocks. */
-struct pool_header {
- union { block *_padding;
- uint count; } ref; /* number of allocated blocks */
- block *freeblock; /* pool's free list head */
- struct pool_header *nextpool; /* next pool of this size class */
- struct pool_header *prevpool; /* previous pool "" */
- uint arenaindex; /* index into arenas of base adr */
- uint szidx; /* block size class index */
- uint nextoffset; /* bytes to virgin block */
- uint maxnextoffset; /* largest valid nextoffset */
-};
-
-typedef struct pool_header *poolp;
-
-#undef ROUNDUP
-#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
-#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
-
-#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
-
-/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
-#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
-
-/* Return total number of blocks in pool of size index I, as a uint. */
-#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
-
-/*==========================================================================*/
-
-/*
- * This malloc lock
- */
-SIMPLELOCK_DECL(_malloc_lock)
-#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
-#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
-#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
-#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
-
-/*
- * Pool table -- headed, circular, doubly-linked lists of partially used pools.
-
-This is involved. For an index i, usedpools[i+i] is the header for a list of
-all partially used pools holding small blocks with "size class idx" i. So
-usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
-16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
-
-Pools are carved off the current arena highwater mark (file static arenabase)
-as needed. Once carved off, a pool is in one of three states forever after:
-
-used == partially used, neither empty nor full
- At least one block in the pool is currently allocated, and at least one
- block in the pool is not currently allocated (note this implies a pool
- has room for at least two blocks).
- This is a pool's initial state, as a pool is created only when malloc
- needs space.
- The pool holds blocks of a fixed size, and is in the circular list headed
- at usedpools[i] (see above). It's linked to the other used pools of the
- same size class via the pool_header's nextpool and prevpool members.
- If all but one block is currently allocated, a malloc can cause a
- transition to the full state. If all but one block is not currently
- allocated, a free can cause a transition to the empty state.
-
-full == all the pool's blocks are currently allocated
- On transition to full, a pool is unlinked from its usedpools[] list.
- It's not linked to from anything then anymore, and its nextpool and
- prevpool members are meaningless until it transitions back to used.
- A free of a block in a full pool puts the pool back in the used state.
- Then it's linked in at the front of the appropriate usedpools[] list, so
- that the next allocation for its size class will reuse the freed block.
-
-empty == all the pool's blocks are currently available for allocation
- On transition to empty, a pool is unlinked from its usedpools[] list,
- and linked to the front of the (file static) singly-linked freepools list,
- via its nextpool member. The prevpool member has no meaning in this case.
- Empty pools have no inherent size class: the next time a malloc finds
- an empty list in usedpools[], it takes the first pool off of freepools.
- If the size class needed happens to be the same as the size class the pool
- last had, some pool initialization can be skipped.
-
-
-Block Management
-
-Blocks within pools are again carved out as needed. pool->freeblock points to
-the start of a singly-linked list of free blocks within the pool. When a
-block is freed, it's inserted at the front of its pool's freeblock list. Note
-that the available blocks in a pool are *not* linked all together when a pool
-is initialized. Instead only "the first two" (lowest addresses) blocks are
-set up, returning the first such block, and setting pool->freeblock to a
-one-block list holding the second such block. This is consistent with that
-pymalloc strives at all levels (arena, pool, and block) never to touch a piece
-of memory until it's actually needed.
-
-So long as a pool is in the used state, we're certain there *is* a block
-available for allocating, and pool->freeblock is not NULL. If pool->freeblock
-points to the end of the free list before we've carved the entire pool into
-blocks, that means we simply haven't yet gotten to one of the higher-address
-blocks. The offset from the pool_header to the start of "the next" virgin
-block is stored in the pool_header nextoffset member, and the largest value
-of nextoffset that makes sense is stored in the maxnextoffset member when a
-pool is initialized. All the blocks in a pool have been passed out at least
-once when and only when nextoffset > maxnextoffset.
-
-
-Major obscurity: While the usedpools vector is declared to have poolp
-entries, it doesn't really. It really contains two pointers per (conceptual)
-poolp entry, the nextpool and prevpool members of a pool_header. The
-excruciating initialization code below fools C so that
-
- usedpool[i+i]
-
-"acts like" a genuine poolp, but only so long as you only reference its
-nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
-compensating for that a pool_header's nextpool and prevpool members
-immediately follow a pool_header's first two members:
-
- union { block *_padding;
- uint count; } ref;
- block *freeblock;
-
-each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
-contains is a fudged-up pointer p such that *if* C believes it's a poolp
-pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
-circular list is empty).
-
-It's unclear why the usedpools setup is so convoluted. It could be to
-minimize the amount of cache required to hold this heavily-referenced table
-(which only *needs* the two interpool pointer members of a pool_header). OTOH,
-referencing code has to remember to "double the index" and doing so isn't
-free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
-on that C doesn't insert any padding anywhere in a pool_header at or before
-the prevpool member.
-**************************************************************************** */
-
-#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
-#define PT(x) PTA(x), PTA(x)
-
-static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
- PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
-#if NB_SMALL_SIZE_CLASSES > 8
- , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
-#if NB_SMALL_SIZE_CLASSES > 16
- , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
-#if NB_SMALL_SIZE_CLASSES > 24
- , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
-#if NB_SMALL_SIZE_CLASSES > 32
- , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
-#if NB_SMALL_SIZE_CLASSES > 40
- , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
-#if NB_SMALL_SIZE_CLASSES > 48
- , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
-#if NB_SMALL_SIZE_CLASSES > 56
- , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
-#endif /* NB_SMALL_SIZE_CLASSES > 56 */
-#endif /* NB_SMALL_SIZE_CLASSES > 48 */
-#endif /* NB_SMALL_SIZE_CLASSES > 40 */
-#endif /* NB_SMALL_SIZE_CLASSES > 32 */
-#endif /* NB_SMALL_SIZE_CLASSES > 24 */
-#endif /* NB_SMALL_SIZE_CLASSES > 16 */
-#endif /* NB_SMALL_SIZE_CLASSES > 8 */
-};
-
-/*
- * Free (cached) pools
- */
-static poolp freepools = NULL; /* free list for cached pools */
-
-/*==========================================================================*/
-/* Arena management. */
-
-/* arenas is a vector of arena base addresses, in order of allocation time.
- * arenas currently contains narenas entries, and has space allocated
- * for at most maxarenas entries.
- *
- * CAUTION: See the long comment block about thread safety in new_arena():
- * the code currently relies in deep ways on that this vector only grows,
- * and only grows by appending at the end. For now we never return an arena
- * to the OS.
- */
-static uptr *volatile arenas = NULL; /* the pointer itself is volatile */
-static volatile uint narenas = 0;
-static uint maxarenas = 0;
-
-/* Number of pools still available to be allocated in the current arena. */
-static uint nfreepools = 0;
-
-/* Free space start address in current arena. This is pool-aligned. */
-static block *arenabase = NULL;
-
-/* Allocate a new arena and return its base address. If we run out of
- * memory, return NULL.
- */
-static block *
-new_arena(void)
-{
- uint excess; /* number of bytes above pool alignment */
- block *bp = (block *)malloc(ARENA_SIZE);
- if (bp == NULL)
- return NULL;
-
-#if 0 /* XXX removed for PyPy - #ifdef PYMALLOC_DEBUG */
- if (Py_GETENV("PYTHONMALLOCSTATS"))
- _PyObject_DebugMallocStats();
-#endif
-
- /* arenabase <- first pool-aligned address in the arena
- nfreepools <- number of whole pools that fit after alignment */
- arenabase = bp;
- nfreepools = ARENA_SIZE / POOL_SIZE;
- assert(POOL_SIZE * nfreepools == ARENA_SIZE);
- excess = (uint) ((long)bp & POOL_SIZE_MASK);
- if (excess != 0) {
- --nfreepools;
- arenabase += POOL_SIZE - excess;
- }
-
- /* Make room for a new entry in the arenas vector. */
- if (arenas == NULL) {
- assert(narenas == 0 && maxarenas == 0);
- arenas = (uptr *)malloc(16 * sizeof(*arenas));
- if (arenas == NULL)
- goto error;
- maxarenas = 16;
- }
- else if (narenas == maxarenas) {
- /* Grow arenas.
- *
- * Exceedingly subtle: Someone may be calling the pymalloc
- * free via PyMem_{DEL, Del, FREE, Free} without holding the
- *.GIL. Someone else may simultaneously be calling the
- * pymalloc malloc while holding the GIL via, e.g.,
- * PyObject_New. Now the pymalloc free may index into arenas
- * for an address check, while the pymalloc malloc calls
- * new_arena and we end up here to grow a new arena *and*
- * grow the arenas vector. If the value for arenas pymalloc
- * free picks up "vanishes" during this resize, anything may
- * happen, and it would be an incredibly rare bug. Therefore
- * the code here takes great pains to make sure that, at every
- * moment, arenas always points to an intact vector of
- * addresses. It doesn't matter whether arenas points to a
- * wholly up-to-date vector when pymalloc free checks it in
- * this case, because the only legal (and that even this is
- * legal is debatable) way to call PyMem_{Del, etc} while not
- * holding the GIL is if the memory being released is not
- * object memory, i.e. if the address check in pymalloc free
- * is supposed to fail. Having an incomplete vector can't
- * make a supposed-to-fail case succeed by mistake (it could
- * only make a supposed-to-succeed case fail by mistake).
- *
- * In addition, without a lock we can't know for sure when
- * an old vector is no longer referenced, so we simply let
- * old vectors leak.
- *
- * And on top of that, since narenas and arenas can't be
- * changed as-a-pair atomically without a lock, we're also
- * careful to declare them volatile and ensure that we change
- * arenas first. This prevents another thread from picking
- * up an narenas value too large for the arenas value it
- * reads up (arenas never shrinks).
- *
- * Read the above 50 times before changing anything in this
- * block.
- */
- uptr *p;
- uint newmax = maxarenas << 1;
- if (newmax <= maxarenas) /* overflow */
- goto error;
- p = (uptr *)malloc(newmax * sizeof(*arenas));
- if (p == NULL)
- goto error;
- memcpy(p, arenas, narenas * sizeof(*arenas));
- arenas = p; /* old arenas deliberately leaked */
- maxarenas = newmax;
- }
-
- /* Append the new arena address to arenas. */
- assert(narenas < maxarenas);
- arenas[narenas] = (uptr)bp;
- ++narenas; /* can't overflow, since narenas < maxarenas before */
- return bp;
-
-error:
- free(bp);
- nfreepools = 0;
- return NULL;
-}
-
-/* Return true if and only if P is an address that was allocated by
- * pymalloc. I must be the index into arenas that the address claims
- * to come from.
- *
- * Tricky: Letting B be the arena base address in arenas[I], P belongs to the
- * arena if and only if
- * B <= P < B + ARENA_SIZE
- * Subtracting B throughout, this is true iff
- * 0 <= P-B < ARENA_SIZE
- * By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
- *
- * Obscure: A PyMem "free memory" function can call the pymalloc free or
- * realloc before the first arena has been allocated. arenas is still
- * NULL in that case. We're relying on that narenas is also 0 in that case,
- * so the (I) < narenas must be false, saving us from trying to index into
- * a NULL arenas.
- */
-#define Py_ADDRESS_IN_RANGE(P, POOL) \
- ((POOL)->arenaindex < narenas && \
- (uptr)(P) - arenas[(POOL)->arenaindex] < (uptr)ARENA_SIZE)
-
-/* This is only useful when running memory debuggers such as
- * Purify or Valgrind. Uncomment to use.
- *
-#define Py_USING_MEMORY_DEBUGGER
- */
-
-#ifdef Py_USING_MEMORY_DEBUGGER
-
-/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design
- * This leads to thousands of spurious warnings when using
- * Purify or Valgrind. By making a function, we can easily
- * suppress the uninitialized memory reads in this one function.
- * So we won't ignore real errors elsewhere.
- *
- * Disable the macro and use a function.
- */
-
-#undef Py_ADDRESS_IN_RANGE
-
-/* Don't make static, to ensure this isn't inlined. */
-int Py_ADDRESS_IN_RANGE(void *P, poolp pool);
-#endif
-
-/*==========================================================================*/
-
-/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
- * from all other currently live pointers. This may not be possible.
- */
-
-/*
- * The basic blocks are ordered by decreasing execution frequency,
- * which minimizes the number of jumps in the most common cases,
- * improves branching prediction and instruction scheduling (small
- * block allocations typically result in a couple of instructions).
- * Unless the optimizer reorders everything, being too smart...
- */
-
-#undef PyObject_Malloc
-void *
-PyObject_Malloc(size_t nbytes)
-{
- block *bp;
- poolp pool;
- poolp next;
- uint size;
-
- /*
- * This implicitly redirects malloc(0).
- */
- if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
- LOCK();
- /*
- * Most frequent paths first
- */
- size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT;
- pool = usedpools[size + size];
- if (pool != pool->nextpool) {
- /*
- * There is a used pool for this size class.
- * Pick up the head block of its free list.
- */
- ++pool->ref.count;
- bp = pool->freeblock;
- assert(bp != NULL);
- if ((pool->freeblock = *(block **)bp) != NULL) {
- UNLOCK();
- return (void *)bp;
- }
- /*
- * Reached the end of the free list, try to extend it
- */
- if (pool->nextoffset <= pool->maxnextoffset) {
- /*
- * There is room for another block
- */
- pool->freeblock = (block *)pool +
- pool->nextoffset;
- pool->nextoffset += INDEX2SIZE(size);
- *(block **)(pool->freeblock) = NULL;
- UNLOCK();
- return (void *)bp;
- }
- /*
- * Pool is full, unlink from used pools
- */
- next = pool->nextpool;
- pool = pool->prevpool;
- next->prevpool = pool;
- pool->nextpool = next;
- UNLOCK();
- return (void *)bp;
- }
- /*
- * Try to get a cached free pool
- */
- pool = freepools;
- if (pool != NULL) {
- /*
- * Unlink from cached pools
- */
- freepools = pool->nextpool;
- init_pool:
- /*
- * Frontlink to used pools
- */
- next = usedpools[size + size]; /* == prev */
- pool->nextpool = next;
- pool->prevpool = next;
- next->nextpool = pool;
- next->prevpool = pool;
- pool->ref.count = 1;
- if (pool->szidx == size) {
- /*
- * Luckily, this pool last contained blocks
- * of the same size class, so its header
- * and free list are already initialized.
- */
- bp = pool->freeblock;
- pool->freeblock = *(block **)bp;
- UNLOCK();
- return (void *)bp;
- }
- /*
- * Initialize the pool header, set up the free list to
- * contain just the second block, and return the first
- * block.
- */
- pool->szidx = size;
- size = INDEX2SIZE(size);
- bp = (block *)pool + POOL_OVERHEAD;
- pool->nextoffset = POOL_OVERHEAD + (size << 1);
- pool->maxnextoffset = POOL_SIZE - size;
- pool->freeblock = bp + size;
- *(block **)(pool->freeblock) = NULL;
- UNLOCK();
- return (void *)bp;
- }
- /*
- * Allocate new pool
- */
- if (nfreepools) {
- commit_pool:
- --nfreepools;
- pool = (poolp)arenabase;
- arenabase += POOL_SIZE;
- pool->arenaindex = narenas - 1;
- pool->szidx = DUMMY_SIZE_IDX;
- goto init_pool;
- }
- /*
- * Allocate new arena
- */
-#ifdef WITH_MEMORY_LIMITS
- if (!(narenas < MAX_ARENAS)) {
- UNLOCK();
- goto redirect;
- }
-#endif
- bp = new_arena();
- if (bp != NULL)
- goto commit_pool;
- UNLOCK();
- goto redirect;
- }
-
- /* The small block allocator ends here. */
-
-redirect:
- /*
- * Redirect the original request to the underlying (libc) allocator.
- * We jump here on bigger requests, on error in the code above (as a
- * last chance to serve the request) or when the max memory limit
- * has been reached.
- */
- if (nbytes == 0)
- nbytes = 1;
- return (void *)malloc(nbytes);
-}
-
-/* free */
-
-#undef PyObject_Free
-void
-PyObject_Free(void *p)
-{
- poolp pool;
- block *lastfree;
- poolp next, prev;
- uint size;
-
- if (p == NULL) /* free(NULL) has no effect */
- return;
-
- pool = POOL_ADDR(p);
- if (Py_ADDRESS_IN_RANGE(p, pool)) {
- /* We allocated this address. */
- LOCK();
- /*
- * Link p to the start of the pool's freeblock list. Since
- * the pool had at least the p block outstanding, the pool
- * wasn't empty (so it's already in a usedpools[] list, or
- * was full and is in no list -- it's not in the freeblocks
- * list in any case).
- */
- assert(pool->ref.count > 0); /* else it was empty */
- *(block **)p = lastfree = pool->freeblock;
- pool->freeblock = (block *)p;
- if (lastfree) {
- /*
- * freeblock wasn't NULL, so the pool wasn't full,
- * and the pool is in a usedpools[] list.
- */
- if (--pool->ref.count != 0) {
- /* pool isn't empty: leave it in usedpools */
- UNLOCK();
- return;
- }
- /*
- * Pool is now empty: unlink from usedpools, and
- * link to the front of freepools. This ensures that
- * previously freed pools will be allocated later
- * (being not referenced, they are perhaps paged out).
- */
- next = pool->nextpool;
- prev = pool->prevpool;
- next->prevpool = prev;
- prev->nextpool = next;
- /* Link to freepools. This is a singly-linked list,
- * and pool->prevpool isn't used there.
- */
- pool->nextpool = freepools;
- freepools = pool;
- UNLOCK();
- return;
- }
- /*
- * Pool was full, so doesn't currently live in any list:
- * link it to the front of the appropriate usedpools[] list.
- * This mimics LRU pool usage for new allocations and
- * targets optimal filling when several pools contain
- * blocks of the same size class.
- */
- --pool->ref.count;
- assert(pool->ref.count > 0); /* else the pool is empty */
- size = pool->szidx;
- next = usedpools[size + size];
- prev = next->prevpool;
- /* insert pool before next: prev <-> pool <-> next */
- pool->nextpool = next;
- pool->prevpool = prev;
- next->prevpool = pool;
- prev->nextpool = pool;
- UNLOCK();
- return;
- }
-
- /* We didn't allocate this address. */
- free(p);
-}
-
-/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
- * then as the Python docs promise, we do not treat this like free(p), and
- * return a non-NULL result.
- */
-
-#undef PyObject_Realloc
-void *
-PyObject_Realloc(void *p, size_t nbytes)
-{
- void *bp;
- poolp pool;
- uint size;
-
- if (p == NULL)
- return PyObject_Malloc(nbytes);
-
- pool = POOL_ADDR(p);
- if (Py_ADDRESS_IN_RANGE(p, pool)) {
- /* We're in charge of this block */
- size = INDEX2SIZE(pool->szidx);
- if (nbytes <= size) {
- /* The block is staying the same or shrinking. If
- * it's shrinking, there's a tradeoff: it costs
- * cycles to copy the block to a smaller size class,
- * but it wastes memory not to copy it. The
- * compromise here is to copy on shrink only if at
- * least 25% of size can be shaved off.
- */
- if (4 * nbytes > 3 * size) {
- /* It's the same,
- * or shrinking and new/old > 3/4.
- */
- return p;
- }
- size = nbytes;
- }
- bp = PyObject_Malloc(nbytes);
- if (bp != NULL) {
- memcpy(bp, p, size);
- PyObject_Free(p);
- }
- return bp;
- }
- /* We're not managing this block. If nbytes <=
- * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
- * block. However, if we do, we need to copy the valid data from
- * the C-managed block to one of our blocks, and there's no portable
- * way to know how much of the memory space starting at p is valid.
- * As bug 1185883 pointed out the hard way, it's possible that the
- * C-managed block is "at the end" of allocated VM space, so that
- * a memory fault can occur if we try to copy nbytes bytes starting
- * at p. Instead we punt: let C continue to manage this block.
- */
- if (nbytes)
- return realloc(p, nbytes);
- /* C doesn't define the result of realloc(p, 0) (it may or may not
- * return NULL then), but Python's docs promise that nbytes==0 never
- * returns NULL. We don't pass 0 to realloc(), to avoid that endcase
- * to begin with. Even then, we can't be sure that realloc() won't
- * return NULL.
- */
- bp = realloc(p, 1);
- return bp ? bp : p;
-}
-
-#else /* ! WITH_PYMALLOC */
-
-/*==========================================================================*/
-/* pymalloc not enabled: Redirect the entry points to malloc. These will
- * only be used by extensions that are compiled with pymalloc enabled. */
-
-void *
-PyObject_Malloc(size_t n)
-{
- return PyMem_MALLOC(n);
-}
-
-void *
-PyObject_Realloc(void *p, size_t n)
-{
- return PyMem_REALLOC(p, n);
-}
-
-void
-PyObject_Free(void *p)
-{
- PyMem_FREE(p);
-}
-#endif /* WITH_PYMALLOC */
-
-#ifdef PYMALLOC_DEBUG
-/*==========================================================================*/
-/* A x-platform debugging allocator. This doesn't manage memory directly,
- * it wraps a real allocator, adding extra debugging info to the memory blocks.
- */
-
-/* XXX added for PyPy for stand-alone usage */
-void Py_FatalError(const char *msg)
-{
- fprintf(stderr, "Py_FatalError() called in obmalloc!\n%s\n", msg);
- abort();
-}
-#define PyOS_snprintf snprintf
-/* end of XXX */
-
-
-/* Special bytes broadcast into debug memory blocks at appropriate times.
- * Strings of these are unlikely to be valid addresses, floats, ints or
- * 7-bit ASCII.
- */
-#undef CLEANBYTE
-#undef DEADBYTE
-#undef FORBIDDENBYTE
-#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
-#define DEADBYTE 0xDB /* dead (newly freed) memory */
-#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
-
-static ulong serialno = 0; /* incremented on each debug {m,re}alloc */
-
-/* serialno is always incremented via calling this routine. The point is
- to supply a single place to set a breakpoint.
-*/
-static void
-bumpserialno(void)
-{
- ++serialno;
-}
-
-
-/* Read 4 bytes at p as a big-endian ulong. */
-static ulong
-read4(const void *p)
-{
- const uchar *q = (const uchar *)p;
- return ((ulong)q[0] << 24) |
- ((ulong)q[1] << 16) |
- ((ulong)q[2] << 8) |
- (ulong)q[3];
-}
-
-/* Write the 4 least-significant bytes of n as a big-endian unsigned int,
- MSB at address p, LSB at p+3. */
-static void
-write4(void *p, ulong n)
-{
- uchar *q = (uchar *)p;
- q[0] = (uchar)((n >> 24) & 0xff);
- q[1] = (uchar)((n >> 16) & 0xff);
- q[2] = (uchar)((n >> 8) & 0xff);
- q[3] = (uchar)( n & 0xff);
-}
-
-#ifdef Py_DEBUG
-/* Is target in the list? The list is traversed via the nextpool pointers.
- * The list may be NULL-terminated, or circular. Return 1 if target is in
- * list, else 0.
- */
-static int
-pool_is_in_list(const poolp target, poolp list)
-{
- poolp origlist = list;
- assert(target != NULL);
- if (list == NULL)
- return 0;
- do {
- if (target == list)
- return 1;
- list = list->nextpool;
- } while (list != NULL && list != origlist);
- return 0;
-}
-
-#else
-#define pool_is_in_list(X, Y) 1
-
-#endif /* Py_DEBUG */
-
-/* The debug malloc asks for 16 extra bytes and fills them with useful stuff,
- here calling the underlying malloc's result p:
-
-p[0:4]
- Number of bytes originally asked for. 4-byte unsigned integer,
- big-endian (easier to read in a memory dump).
-p[4:8]
- Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
-p[8:8+n]
- The requested memory, filled with copies of CLEANBYTE.
- Used to catch reference to uninitialized memory.
- &p[8] is returned. Note that this is 8-byte aligned if pymalloc
- handled the request itself.
-p[8+n:8+n+4]
- Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
-p[8+n+4:8+n+8]
- A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
- and _PyObject_DebugRealloc.
- 4-byte unsigned integer, big-endian.
- If "bad memory" is detected later, the serial number gives an
- excellent way to set a breakpoint on the next run, to capture the
- instant at which this block was passed out.
-*/
-
-void *
-_PyObject_DebugMalloc(size_t nbytes)
-{
- uchar *p; /* base address of malloc'ed block */
- uchar *tail; /* p + 8 + nbytes == pointer to tail pad bytes */
- size_t total; /* nbytes + 16 */
-
- bumpserialno();
- total = nbytes + 16;
- if (total < nbytes || (total >> 31) > 1) {
- /* overflow, or we can't represent it in 4 bytes */
- /* Obscure: can't do (total >> 32) != 0 instead, because
- C doesn't define what happens for a right-shift of 32
- when size_t is a 32-bit type. At least C guarantees
- size_t is an unsigned type. */
- return NULL;
- }
-
- p = (uchar *)PyObject_Malloc(total);
- if (p == NULL)
- return NULL;
-
- write4(p, nbytes);
- p[4] = p[5] = p[6] = p[7] = FORBIDDENBYTE;
-
- if (nbytes > 0)
- memset(p+8, CLEANBYTE, nbytes);
-
- tail = p + 8 + nbytes;
- tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
- write4(tail + 4, serialno);
-
- return p+8;
-}
-
-/* The debug free first checks the 8 bytes on each end for sanity (in
- particular, that the FORBIDDENBYTEs are still intact).
- Then fills the original bytes with DEADBYTE.
- Then calls the underlying free.
-*/
-void
-_PyObject_DebugFree(void *p)
-{
- uchar *q = (uchar *)p;
- size_t nbytes;
-
- if (p == NULL)
- return;
- _PyObject_DebugCheckAddress(p);
- nbytes = read4(q-8);
- if (nbytes > 0)
- memset(q, DEADBYTE, nbytes);
- PyObject_Free(q-8);
-}
-
-void *
-_PyObject_DebugRealloc(void *p, size_t nbytes)
-{
- uchar *q = (uchar *)p;
- uchar *tail;
- size_t total; /* nbytes + 16 */
- size_t original_nbytes;
-
- if (p == NULL)
- return _PyObject_DebugMalloc(nbytes);
-
- _PyObject_DebugCheckAddress(p);
- bumpserialno();
- original_nbytes = read4(q-8);
- total = nbytes + 16;
- if (total < nbytes || (total >> 31) > 1) {
- /* overflow, or we can't represent it in 4 bytes */
- return NULL;
- }
-
- if (nbytes < original_nbytes) {
- /* shrinking: mark old extra memory dead */
- memset(q + nbytes, DEADBYTE, original_nbytes - nbytes);
- }
-
- /* Resize and add decorations. */
- q = (uchar *)PyObject_Realloc(q-8, total);
- if (q == NULL)
- return NULL;
-
- write4(q, nbytes);
- assert(q[4] == FORBIDDENBYTE &&
- q[5] == FORBIDDENBYTE &&
- q[6] == FORBIDDENBYTE &&
- q[7] == FORBIDDENBYTE);
- q += 8;
- tail = q + nbytes;
- tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
- write4(tail + 4, serialno);
-
- if (nbytes > original_nbytes) {
- /* growing: mark new extra memory clean */
- memset(q + original_nbytes, CLEANBYTE,
- nbytes - original_nbytes);
- }
-
- return q;
-}
-
-/* Check the forbidden bytes on both ends of the memory allocated for p.
- * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
- * and call Py_FatalError to kill the program.
- */
- void
-_PyObject_DebugCheckAddress(const void *p)
-{
- const uchar *q = (const uchar *)p;
- char *msg;
- ulong nbytes;
- const uchar *tail;
- int i;
-
- if (p == NULL) {
- msg = "didn't expect a NULL pointer";
- goto error;
- }
-
- /* Check the stuff at the start of p first: if there's underwrite
- * corruption, the number-of-bytes field may be nuts, and checking
- * the tail could lead to a segfault then.
- */
- for (i = 4; i >= 1; --i) {
- if (*(q-i) != FORBIDDENBYTE) {
- msg = "bad leading pad byte";
- goto error;
- }
- }
-
- nbytes = read4(q-8);
- tail = q + nbytes;
- for (i = 0; i < 4; ++i) {
- if (tail[i] != FORBIDDENBYTE) {
- msg = "bad trailing pad byte";
- goto error;
- }
- }
-
- return;
-
-error:
- _PyObject_DebugDumpAddress(p);
- Py_FatalError(msg);
-}
-
-/* Display info to stderr about the memory block at p. */
-void
-_PyObject_DebugDumpAddress(const void *p)
-{
- const uchar *q = (const uchar *)p;
- const uchar *tail;
- ulong nbytes, serial;
- int i;
-
- fprintf(stderr, "Debug memory block at address p=%p:\n", p);
- if (p == NULL)
- return;
-
- nbytes = read4(q-8);
- fprintf(stderr, " %lu bytes originally requested\n", nbytes);
-
- /* In case this is nuts, check the leading pad bytes first. */
- fputs(" The 4 pad bytes at p-4 are ", stderr);
- if (*(q-4) == FORBIDDENBYTE &&
- *(q-3) == FORBIDDENBYTE &&
- *(q-2) == FORBIDDENBYTE &&
- *(q-1) == FORBIDDENBYTE) {
- fputs("FORBIDDENBYTE, as expected.\n", stderr);
- }
- else {
- fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
- FORBIDDENBYTE);
- for (i = 4; i >= 1; --i) {
- const uchar byte = *(q-i);
- fprintf(stderr, " at p-%d: 0x%02x", i, byte);
- if (byte != FORBIDDENBYTE)
- fputs(" *** OUCH", stderr);
- fputc('\n', stderr);
- }
-
- fputs(" Because memory is corrupted at the start, the "
- "count of bytes requested\n"
- " may be bogus, and checking the trailing pad "
- "bytes may segfault.\n", stderr);
- }
-
- tail = q + nbytes;
- fprintf(stderr, " The 4 pad bytes at tail=%p are ", tail);
- if (tail[0] == FORBIDDENBYTE &&
- tail[1] == FORBIDDENBYTE &&
- tail[2] == FORBIDDENBYTE &&
- tail[3] == FORBIDDENBYTE) {
- fputs("FORBIDDENBYTE, as expected.\n", stderr);
- }
- else {
- fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
- FORBIDDENBYTE);
- for (i = 0; i < 4; ++i) {
- const uchar byte = tail[i];
- fprintf(stderr, " at tail+%d: 0x%02x",
- i, byte);
- if (byte != FORBIDDENBYTE)
- fputs(" *** OUCH", stderr);
- fputc('\n', stderr);
- }
- }
-
- serial = read4(tail+4);
- fprintf(stderr, " The block was made by call #%lu to "
- "debug malloc/realloc.\n", serial);
-
- if (nbytes > 0) {
- int i = 0;
- fputs(" Data at p:", stderr);
- /* print up to 8 bytes at the start */
- while (q < tail && i < 8) {
- fprintf(stderr, " %02x", *q);
- ++i;
- ++q;
- }
- /* and up to 8 at the end */
- if (q < tail) {
- if (tail - q > 8) {
- fputs(" ...", stderr);
- q = tail - 8;
- }
- while (q < tail) {
- fprintf(stderr, " %02x", *q);
- ++q;
- }
- }
- fputc('\n', stderr);
- }
-}
-
-static ulong
-printone(const char* msg, ulong value)
-{
- int i, k;
- char buf[100];
- ulong origvalue = value;
-
- fputs(msg, stderr);
- for (i = (int)strlen(msg); i < 35; ++i)
- fputc(' ', stderr);
- fputc('=', stderr);
-
- /* Write the value with commas. */
- i = 22;
- buf[i--] = '\0';
- buf[i--] = '\n';
- k = 3;
- do {
- ulong nextvalue = value / 10UL;
- uint digit = value - nextvalue * 10UL;
- value = nextvalue;
- buf[i--] = (char)(digit + '0');
- --k;
- if (k == 0 && value && i >= 0) {
- k = 3;
- buf[i--] = ',';
- }
- } while (value && i >= 0);
-
- while (i >= 0)
- buf[i--] = ' ';
- fputs(buf, stderr);
-
- return origvalue;
-}
-
-/* Print summary info to stderr about the state of pymalloc's structures.
- * In Py_DEBUG mode, also perform some expensive internal consistency
- * checks.
- */
-void
-_PyObject_DebugMallocStats(void)
-{
- uint i;
- const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
- /* # of pools, allocated blocks, and free blocks per class index */
- ulong numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
- ulong numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
- ulong numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
- /* total # of allocated bytes in used and full pools */
- ulong allocated_bytes = 0;
- /* total # of available bytes in used pools */
- ulong available_bytes = 0;
- /* # of free pools + pools not yet carved out of current arena */
- uint numfreepools = 0;
- /* # of bytes for arena alignment padding */
- ulong arena_alignment = 0;
- /* # of bytes in used and full pools used for pool_headers */
- ulong pool_header_bytes = 0;
- /* # of bytes in used and full pools wasted due to quantization,
- * i.e. the necessarily leftover space at the ends of used and
- * full pools.
- */
- ulong quantization = 0;
- /* running total -- should equal narenas * ARENA_SIZE */
- ulong total;
- char buf[128];
-
- fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
- SMALL_REQUEST_THRESHOLD, numclasses);
-
- for (i = 0; i < numclasses; ++i)
- numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
-
- /* Because full pools aren't linked to from anything, it's easiest
- * to march over all the arenas. If we're lucky, most of the memory
- * will be living in full pools -- would be a shame to miss them.
- */
- for (i = 0; i < narenas; ++i) {
- uint poolsinarena;
- uint j;
- uptr base = arenas[i];
-
- /* round up to pool alignment */
- poolsinarena = ARENA_SIZE / POOL_SIZE;
- if (base & (uptr)POOL_SIZE_MASK) {
- --poolsinarena;
- arena_alignment += POOL_SIZE;
- base &= ~(uptr)POOL_SIZE_MASK;
- base += POOL_SIZE;
- }
-
- if (i == narenas - 1) {
- /* current arena may have raw memory at the end */
- numfreepools += nfreepools;
- poolsinarena -= nfreepools;
- }
-
- /* visit every pool in the arena */
- for (j = 0; j < poolsinarena; ++j, base += POOL_SIZE) {
- poolp p = (poolp)base;
- const uint sz = p->szidx;
- uint freeblocks;
-
- if (p->ref.count == 0) {
- /* currently unused */
- ++numfreepools;
- assert(pool_is_in_list(p, freepools));
- continue;
- }
- ++numpools[sz];
- numblocks[sz] += p->ref.count;
- freeblocks = NUMBLOCKS(sz) - p->ref.count;
- numfreeblocks[sz] += freeblocks;
-#ifdef Py_DEBUG
- if (freeblocks > 0)
- assert(pool_is_in_list(p, usedpools[sz + sz]));
-#endif
- }
- }
-
- fputc('\n', stderr);
- fputs("class size num pools blocks in use avail blocks\n"
- "----- ---- --------- ------------- ------------\n",
- stderr);
-
- for (i = 0; i < numclasses; ++i) {
- ulong p = numpools[i];
- ulong b = numblocks[i];
- ulong f = numfreeblocks[i];
- uint size = INDEX2SIZE(i);
- if (p == 0) {
- assert(b == 0 && f == 0);
- continue;
- }
- fprintf(stderr, "%5u %6u %11lu %15lu %13lu\n",
- i, size, p, b, f);
- allocated_bytes += b * size;
- available_bytes += f * size;
- pool_header_bytes += p * POOL_OVERHEAD;
- quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
- }
- fputc('\n', stderr);
- (void)printone("# times object malloc called", serialno);
-
- PyOS_snprintf(buf, sizeof(buf),
- "%u arenas * %d bytes/arena", narenas, ARENA_SIZE);
- (void)printone(buf, (ulong)narenas * ARENA_SIZE);
-
- fputc('\n', stderr);
-
- total = printone("# bytes in allocated blocks", allocated_bytes);
- total += printone("# bytes in available blocks", available_bytes);
-
- PyOS_snprintf(buf, sizeof(buf),
- "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
- total += printone(buf, (ulong)numfreepools * POOL_SIZE);
-
- total += printone("# bytes lost to pool headers", pool_header_bytes);
- total += printone("# bytes lost to quantization", quantization);
- total += printone("# bytes lost to arena alignment", arena_alignment);
- (void)printone("Total", total);
-}
-
-#endif /* PYMALLOC_DEBUG */
-
-#ifdef Py_USING_MEMORY_DEBUGGER
-/* Make this function last so gcc won't inline it
- since the definition is after the reference. */
-int
-Py_ADDRESS_IN_RANGE(void *P, poolp pool)
-{
- return ((pool->arenaindex) < narenas &&
- (uptr)(P) - arenas[pool->arenaindex] < (uptr)ARENA_SIZE);
-}
-#endif
_______________________________________________
pypy-commit mailing list
[email protected]
https://mail.python.org/mailman/listinfo/pypy-commit