Author: Maciej Fijalkowski <fij...@gmail.com> Branch: Changeset: r74627:7b11194ab1d4 Date: 2014-11-21 09:02 +0200 http://bitbucket.org/pypy/pypy/changeset/7b11194ab1d4/
Log: Kill obmalloc. Shockingly everything nicely passes diff --git a/rpython/translator/c/genc.py b/rpython/translator/c/genc.py --- a/rpython/translator/c/genc.py +++ b/rpython/translator/c/genc.py @@ -405,8 +405,6 @@ ('debug', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT" debug_target'), ('debug_exc', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT -DDO_LOG_EXC" debug_target'), ('debug_mem', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT -DPYPY_USE_TRIVIAL_MALLOC" debug_target'), - ('no_obmalloc', '', '$(MAKE) CFLAGS="-g -O2 -DRPY_ASSERT -DPYPY_NO_OBMALLOC" $(TARGET)'), - ('linuxmemchk', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT -DPYPY_USE_LINUXMEMCHK" debug_target'), ('llsafer', '', '$(MAKE) CFLAGS="-O2 -DRPY_LL_ASSERT" $(TARGET)'), ('lldebug', '', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -DRPY_ASSERT -DRPY_LL_ASSERT" debug_target'), ('lldebug0','', '$(MAKE) CFLAGS="$(DEBUGFLAGS) -O0 -DRPY_ASSERT -DRPY_LL_ASSERT" debug_target'), @@ -762,7 +760,6 @@ srcdir = py.path.local(__file__).join('..', 'src') files = [ srcdir / 'entrypoint.c', # ifdef PYPY_STANDALONE - srcdir / 'allocator.c', # ifdef PYPY_STANDALONE srcdir / 'mem.c', srcdir / 'exception.c', srcdir / 'rtyper.c', # ifdef HAVE_RTYPER diff --git a/rpython/translator/c/src/allocator.c b/rpython/translator/c/src/allocator.c deleted file mode 100644 --- a/rpython/translator/c/src/allocator.c +++ /dev/null @@ -1,33 +0,0 @@ -/* allocation functions */ -#include "common_header.h" -#ifdef PYPY_STANDALONE -#include <stdlib.h> - -#if defined(PYPY_USE_TRIVIAL_MALLOC) - void *PyObject_Malloc(size_t n) { return malloc(n); } - void *PyObject_Realloc(void *p, size_t n) { return realloc(p, n); } - void PyObject_Free(void *p) { if (p) { *((int*)p) = 0xDDDDDDDD; } free(p); } - -#elif defined(PYPY_USE_LINUXMEMCHK) -# include "linuxmemchk.c" - -#elif defined(PYPY_NO_OBMALLOC) - void *PyObject_Malloc(size_t n) { return malloc(n); } - void *PyObject_Realloc(void *p, size_t n) { return realloc(p, n); } - void PyObject_Free(void *p) { free(p); } - -#else -# ifndef WITH_PYMALLOC -# define WITH_PYMALLOC -# endif -/* The same obmalloc as CPython */ -# include "src/obmalloc.c" - -#endif -#elif defined _MSC_VER -/* link will fail without some kind of definition for the functions */ - void *PyObject_Malloc(size_t n) { return NULL; } - void *PyObject_Realloc(void *p, size_t n) { return NULL; } - void PyObject_Free(void *p) { } - -#endif /* PYPY_STANDALONE */ diff --git a/rpython/translator/c/src/allocator.h b/rpython/translator/c/src/allocator.h deleted file mode 100644 --- a/rpython/translator/c/src/allocator.h +++ /dev/null @@ -1,4 +0,0 @@ -/* allocation functions prototypes */ -RPY_EXTERN void *PyObject_Malloc(size_t n); -RPY_EXTERN void *PyObject_Realloc(void *p, size_t n); -RPY_EXTERN void PyObject_Free(void *p); diff --git a/rpython/translator/c/src/g_include.h b/rpython/translator/c/src/g_include.h --- a/rpython/translator/c/src/g_include.h +++ b/rpython/translator/c/src/g_include.h @@ -33,7 +33,6 @@ # include "src/debug_traceback.h" #endif -# include "src/allocator.h" #ifdef PYPY_STANDALONE # include "src/entrypoint.h" #endif diff --git a/rpython/translator/c/src/linuxmemchk.c b/rpython/translator/c/src/linuxmemchk.c deleted file mode 100644 --- a/rpython/translator/c/src/linuxmemchk.c +++ /dev/null @@ -1,101 +0,0 @@ -/* custom checking allocators a la Electric Fence */ -#include <stdlib.h> -#include <stdio.h> -#include <sys/mman.h> -#include <sys/types.h> -#include <sys/stat.h> -#include <fcntl.h> -#define PAGESIZE 4096 -#ifndef MALLOC_BIGBUFFER -# define MALLOC_BIGBUFFER (PAGESIZE*32768) /* 128MB */ -#endif - - -struct _alloc_s { - void* ptr; - int npages; -}; -static void* _na_start = NULL; -static char* _na_cur; - -static void _na_assert(int x, char* msg) -{ - if (!x) - { - fprintf(stderr, "linuxmemchk: failed assertion: %s\n", msg); - abort(); - } -} - -static struct _alloc_s* _na_find(void* data) -{ - int err; - long data1; - struct _alloc_s* s; - _na_assert(_na_start+PAGESIZE <= data && - data < _na_start+MALLOC_BIGBUFFER-PAGESIZE, - "corrupted na_start"); - data1 = (long) data; - data1 &= ~(PAGESIZE-1); - data1 -= PAGESIZE; - err = mprotect((void*) data1, PAGESIZE, PROT_READ|PROT_WRITE); - _na_assert(!err, "mprotect[1] failed"); - s = (struct _alloc_s*) data1; - _na_assert(s->npages > 0, "corrupted s->npages"); - return s; -} - -void* PyObject_Malloc(size_t size) -{ - int err, npages = (size + PAGESIZE-1) / PAGESIZE + 1; - struct _alloc_s* s; - char* data; - if (_na_start == NULL) - { - _na_start = mmap(NULL, MALLOC_BIGBUFFER, PROT_NONE, - MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); - _na_assert(_na_start != MAP_FAILED, "initial mmap failed"); - _na_cur = (char*) _na_start; - } - s = (struct _alloc_s*) _na_cur; - _na_cur += npages * PAGESIZE; - if (_na_cur >= ((char*) _na_start) + MALLOC_BIGBUFFER) - { - fprintf(stderr, "linuxmemchk.c: Nothing wrong so far, but we are running out\nlinuxmemchk.c: of mmap'ed memory. Increase MALLOC_BIGBUFFER.\n"); - abort(); - } - err = mprotect(s, npages * PAGESIZE, PROT_READ|PROT_WRITE|PROT_EXEC); - _na_assert(!err, "mprotect[2] failed"); - s->ptr = data = _na_cur - /*((size+3)&~3)*/ size; - s->npages = npages; - err = mprotect(s, PAGESIZE, PROT_NONE); - _na_assert(!err, "mprotect[3] failed"); - return data; -} - -void PyObject_Free(void* data) -{ - int err, npages; - struct _alloc_s* s; - if (data == NULL) - return; - s = _na_find(data); - _na_assert(s->ptr == data, "free got a pointer not returned by malloc"); - npages = s->npages; - s->npages = 0; - err = mprotect(s, npages * PAGESIZE, PROT_NONE); - _na_assert(!err, "mprotect[4] failed"); -} - -void* PyObject_Realloc(void* data, size_t nsize) -{ - size_t size; - struct _alloc_s* s = _na_find(data); - void* ndata = PyObject_Malloc(nsize); - - _na_assert(s->ptr == data, "realloc got a pointer not returned by malloc"); - size = ((char*)s) + s->npages * PAGESIZE - (char*)data; - memcpy(ndata, data, size<nsize ? size : nsize); - PyObject_Free(data); - return ndata; -} diff --git a/rpython/translator/c/src/mem.h b/rpython/translator/c/src/mem.h --- a/rpython/translator/c/src/mem.h +++ b/rpython/translator/c/src/mem.h @@ -9,13 +9,13 @@ #define OP_RAW_MALLOC(size, r, restype) { \ - r = (restype) PyObject_Malloc(size); \ + r = (restype) malloc(size); \ if (r != NULL) { \ COUNT_MALLOC; \ } \ } -#define OP_RAW_FREE(p, r) PyObject_Free(p); COUNT_FREE; +#define OP_RAW_FREE(p, r) free(p); COUNT_FREE; #define OP_RAW_MEMCLEAR(p, size, r) memset((void*)p, 0, size) #define OP_RAW_MEMSET(p, byte, size, r) memset((void*)p, byte, size) diff --git a/rpython/translator/c/src/obmalloc.c b/rpython/translator/c/src/obmalloc.c deleted file mode 100644 --- a/rpython/translator/c/src/obmalloc.c +++ /dev/null @@ -1,1418 +0,0 @@ - -#ifdef WITH_PYMALLOC - -#include <string.h> -#include <assert.h> - -/* An object allocator for Python. - - Here is an introduction to the layers of the Python memory architecture, - showing where the object allocator is actually used (layer +2), It is - called for every object allocation and deallocation (PyObject_New/Del), - unless the object-specific allocators implement a proprietary allocation - scheme (ex.: ints use a simple free list). This is also the place where - the cyclic garbage collector operates selectively on container objects. - - - Object-specific allocators - _____ ______ ______ ________ - [ int ] [ dict ] [ list ] ... [ string ] Python core | -+3 | <----- Object-specific memory -----> | <-- Non-object memory --> | - _______________________________ | | - [ Python's object allocator ] | | -+2 | ####### Object memory ####### | <------ Internal buffers ------> | - ______________________________________________________________ | - [ Python's raw memory allocator (PyMem_ API) ] | -+1 | <----- Python memory (under PyMem manager's control) ------> | | - __________________________________________________________________ - [ Underlying general-purpose allocator (ex: C library malloc) ] - 0 | <------ Virtual memory allocated for the python process -------> | - - ========================================================================= - _______________________________________________________________________ - [ OS-specific Virtual Memory Manager (VMM) ] --1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | - __________________________________ __________________________________ - [ ] [ ] --2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | - -*/ -/*==========================================================================*/ - -/* A fast, special-purpose memory allocator for small blocks, to be used - on top of a general-purpose malloc -- heavily based on previous art. */ - -/* Vladimir Marangozov -- August 2000 */ - -/* - * "Memory management is where the rubber meets the road -- if we do the wrong - * thing at any level, the results will not be good. And if we don't make the - * levels work well together, we are in serious trouble." (1) - * - * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, - * "Dynamic Storage Allocation: A Survey and Critical Review", - * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. - */ - -/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ - -/*==========================================================================*/ - -/* - * Allocation strategy abstract: - * - * For small requests, the allocator sub-allocates <Big> blocks of memory. - * Requests greater than 256 bytes are routed to the system's allocator. - * - * Small requests are grouped in size classes spaced 8 bytes apart, due - * to the required valid alignment of the returned address. Requests of - * a particular size are serviced from memory pools of 4K (one VMM page). - * Pools are fragmented on demand and contain free lists of blocks of one - * particular size class. In other words, there is a fixed-size allocator - * for each size class. Free pools are shared by the different allocators - * thus minimizing the space reserved for a particular size class. - * - * This allocation strategy is a variant of what is known as "simple - * segregated storage based on array of free lists". The main drawback of - * simple segregated storage is that we might end up with lot of reserved - * memory for the different free lists, which degenerate in time. To avoid - * this, we partition each free list in pools and we share dynamically the - * reserved space between all free lists. This technique is quite efficient - * for memory intensive programs which allocate mainly small-sized blocks. - * - * For small requests we have the following table: - * - * Request in bytes Size of allocated block Size class idx - * ---------------------------------------------------------------- - * 1-8 8 0 - * 9-16 16 1 - * 17-24 24 2 - * 25-32 32 3 - * 33-40 40 4 - * 41-48 48 5 - * 49-56 56 6 - * 57-64 64 7 - * 65-72 72 8 - * ... ... ... - * 241-248 248 30 - * 249-256 256 31 - * - * 0, 257 and up: routed to the underlying allocator. - */ - -/*==========================================================================*/ - -/* - * -- Main tunable settings section -- - */ - -/* - * Alignment of addresses returned to the user. 8-bytes alignment works - * on most current architectures (with 32-bit or 64-bit address busses). - * The alignment value is also used for grouping small requests in size - * classes spaced ALIGNMENT bytes apart. - * - * You shouldn't change this unless you know what you are doing. - */ -#define ALIGNMENT 8 /* must be 2^N */ -#define ALIGNMENT_SHIFT 3 -#define ALIGNMENT_MASK (ALIGNMENT - 1) - -/* Return the number of bytes in size class I, as a uint. */ -#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT) - -/* - * Max size threshold below which malloc requests are considered to be - * small enough in order to use preallocated memory pools. You can tune - * this value according to your application behaviour and memory needs. - * - * The following invariants must hold: - * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256 - * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT - * - * Although not required, for better performance and space efficiency, - * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. - */ -#define SMALL_REQUEST_THRESHOLD 256 -#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) - -/* - * The system's VMM page size can be obtained on most unices with a - * getpagesize() call or deduced from various header files. To make - * things simpler, we assume that it is 4K, which is OK for most systems. - * It is probably better if this is the native page size, but it doesn't - * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page - * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation - * violation fault. 4K is apparently OK for all the platforms that python - * currently targets. - */ -#define SYSTEM_PAGE_SIZE (4 * 1024) -#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1) - -/* - * Maximum amount of memory managed by the allocator for small requests. - */ -#ifdef WITH_MEMORY_LIMITS -#ifndef SMALL_MEMORY_LIMIT -#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ -#endif -#endif - -/* - * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned - * on a page boundary. This is a reserved virtual address space for the - * current process (obtained through a malloc call). In no way this means - * that the memory arenas will be used entirely. A malloc(<Big>) is usually - * an address range reservation for <Big> bytes, unless all pages within this - * space are referenced subsequently. So malloc'ing big blocks and not using - * them does not mean "wasting memory". It's an addressable range wastage... - * - * Therefore, allocating arenas with malloc is not optimal, because there is - * some address space wastage, but this is the most portable way to request - * memory from the system across various platforms. - */ -#define ARENA_SIZE (256 << 10) /* 256KB */ - -#ifdef WITH_MEMORY_LIMITS -#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) -#endif - -/* - * Size of the pools used for small blocks. Should be a power of 2, - * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k. - */ -#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */ -#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK - -/* - * -- End of tunable settings section -- - */ - -/*==========================================================================*/ - -/* - * Locking - * - * To reduce lock contention, it would probably be better to refine the - * crude function locking with per size class locking. I'm not positive - * however, whether it's worth switching to such locking policy because - * of the performance penalty it might introduce. - * - * The following macros describe the simplest (should also be the fastest) - * lock object on a particular platform and the init/fini/lock/unlock - * operations on it. The locks defined here are not expected to be recursive - * because it is assumed that they will always be called in the order: - * INIT, [LOCK, UNLOCK]*, FINI. - */ - -/* - * Python's threads are serialized, so object malloc locking is disabled. - */ -#define SIMPLELOCK_DECL(lock) /* simple lock declaration */ -#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */ -#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */ -#define SIMPLELOCK_LOCK(lock) /* acquire released lock */ -#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */ - -/* - * Basic types - * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom. - */ -#undef uchar -#define uchar unsigned char /* assuming == 8 bits */ - -#undef uint -#define uint unsigned int /* assuming >= 16 bits */ - -#undef ulong -#define ulong Unsigned /* assuming >= 32 bits */ - -#undef uptr -#define uptr Unsigned - -/* When you say memory, my mind reasons in terms of (pointers to) blocks */ -typedef uchar block; - -/* Pool for small blocks. */ -struct pool_header { - union { block *_padding; - uint count; } ref; /* number of allocated blocks */ - block *freeblock; /* pool's free list head */ - struct pool_header *nextpool; /* next pool of this size class */ - struct pool_header *prevpool; /* previous pool "" */ - uint arenaindex; /* index into arenas of base adr */ - uint szidx; /* block size class index */ - uint nextoffset; /* bytes to virgin block */ - uint maxnextoffset; /* largest valid nextoffset */ -}; - -typedef struct pool_header *poolp; - -#undef ROUNDUP -#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK) -#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header)) - -#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ - -/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ -#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK)) - -/* Return total number of blocks in pool of size index I, as a uint. */ -#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) - -/*==========================================================================*/ - -/* - * This malloc lock - */ -SIMPLELOCK_DECL(_malloc_lock) -#define LOCK() SIMPLELOCK_LOCK(_malloc_lock) -#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock) -#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock) -#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock) - -/* - * Pool table -- headed, circular, doubly-linked lists of partially used pools. - -This is involved. For an index i, usedpools[i+i] is the header for a list of -all partially used pools holding small blocks with "size class idx" i. So -usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size -16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. - -Pools are carved off the current arena highwater mark (file static arenabase) -as needed. Once carved off, a pool is in one of three states forever after: - -used == partially used, neither empty nor full - At least one block in the pool is currently allocated, and at least one - block in the pool is not currently allocated (note this implies a pool - has room for at least two blocks). - This is a pool's initial state, as a pool is created only when malloc - needs space. - The pool holds blocks of a fixed size, and is in the circular list headed - at usedpools[i] (see above). It's linked to the other used pools of the - same size class via the pool_header's nextpool and prevpool members. - If all but one block is currently allocated, a malloc can cause a - transition to the full state. If all but one block is not currently - allocated, a free can cause a transition to the empty state. - -full == all the pool's blocks are currently allocated - On transition to full, a pool is unlinked from its usedpools[] list. - It's not linked to from anything then anymore, and its nextpool and - prevpool members are meaningless until it transitions back to used. - A free of a block in a full pool puts the pool back in the used state. - Then it's linked in at the front of the appropriate usedpools[] list, so - that the next allocation for its size class will reuse the freed block. - -empty == all the pool's blocks are currently available for allocation - On transition to empty, a pool is unlinked from its usedpools[] list, - and linked to the front of the (file static) singly-linked freepools list, - via its nextpool member. The prevpool member has no meaning in this case. - Empty pools have no inherent size class: the next time a malloc finds - an empty list in usedpools[], it takes the first pool off of freepools. - If the size class needed happens to be the same as the size class the pool - last had, some pool initialization can be skipped. - - -Block Management - -Blocks within pools are again carved out as needed. pool->freeblock points to -the start of a singly-linked list of free blocks within the pool. When a -block is freed, it's inserted at the front of its pool's freeblock list. Note -that the available blocks in a pool are *not* linked all together when a pool -is initialized. Instead only "the first two" (lowest addresses) blocks are -set up, returning the first such block, and setting pool->freeblock to a -one-block list holding the second such block. This is consistent with that -pymalloc strives at all levels (arena, pool, and block) never to touch a piece -of memory until it's actually needed. - -So long as a pool is in the used state, we're certain there *is* a block -available for allocating, and pool->freeblock is not NULL. If pool->freeblock -points to the end of the free list before we've carved the entire pool into -blocks, that means we simply haven't yet gotten to one of the higher-address -blocks. The offset from the pool_header to the start of "the next" virgin -block is stored in the pool_header nextoffset member, and the largest value -of nextoffset that makes sense is stored in the maxnextoffset member when a -pool is initialized. All the blocks in a pool have been passed out at least -once when and only when nextoffset > maxnextoffset. - - -Major obscurity: While the usedpools vector is declared to have poolp -entries, it doesn't really. It really contains two pointers per (conceptual) -poolp entry, the nextpool and prevpool members of a pool_header. The -excruciating initialization code below fools C so that - - usedpool[i+i] - -"acts like" a genuine poolp, but only so long as you only reference its -nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is -compensating for that a pool_header's nextpool and prevpool members -immediately follow a pool_header's first two members: - - union { block *_padding; - uint count; } ref; - block *freeblock; - -each of which consume sizeof(block *) bytes. So what usedpools[i+i] really -contains is a fudged-up pointer p such that *if* C believes it's a poolp -pointer, then p->nextpool and p->prevpool are both p (meaning that the headed -circular list is empty). - -It's unclear why the usedpools setup is so convoluted. It could be to -minimize the amount of cache required to hold this heavily-referenced table -(which only *needs* the two interpool pointer members of a pool_header). OTOH, -referencing code has to remember to "double the index" and doing so isn't -free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying -on that C doesn't insert any padding anywhere in a pool_header at or before -the prevpool member. -**************************************************************************** */ - -#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *))) -#define PT(x) PTA(x), PTA(x) - -static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { - PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) -#if NB_SMALL_SIZE_CLASSES > 8 - , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) -#if NB_SMALL_SIZE_CLASSES > 16 - , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) -#if NB_SMALL_SIZE_CLASSES > 24 - , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) -#if NB_SMALL_SIZE_CLASSES > 32 - , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) -#if NB_SMALL_SIZE_CLASSES > 40 - , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) -#if NB_SMALL_SIZE_CLASSES > 48 - , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) -#if NB_SMALL_SIZE_CLASSES > 56 - , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) -#endif /* NB_SMALL_SIZE_CLASSES > 56 */ -#endif /* NB_SMALL_SIZE_CLASSES > 48 */ -#endif /* NB_SMALL_SIZE_CLASSES > 40 */ -#endif /* NB_SMALL_SIZE_CLASSES > 32 */ -#endif /* NB_SMALL_SIZE_CLASSES > 24 */ -#endif /* NB_SMALL_SIZE_CLASSES > 16 */ -#endif /* NB_SMALL_SIZE_CLASSES > 8 */ -}; - -/* - * Free (cached) pools - */ -static poolp freepools = NULL; /* free list for cached pools */ - -/*==========================================================================*/ -/* Arena management. */ - -/* arenas is a vector of arena base addresses, in order of allocation time. - * arenas currently contains narenas entries, and has space allocated - * for at most maxarenas entries. - * - * CAUTION: See the long comment block about thread safety in new_arena(): - * the code currently relies in deep ways on that this vector only grows, - * and only grows by appending at the end. For now we never return an arena - * to the OS. - */ -static uptr *volatile arenas = NULL; /* the pointer itself is volatile */ -static volatile uint narenas = 0; -static uint maxarenas = 0; - -/* Number of pools still available to be allocated in the current arena. */ -static uint nfreepools = 0; - -/* Free space start address in current arena. This is pool-aligned. */ -static block *arenabase = NULL; - -/* Allocate a new arena and return its base address. If we run out of - * memory, return NULL. - */ -static block * -new_arena(void) -{ - uint excess; /* number of bytes above pool alignment */ - block *bp = (block *)malloc(ARENA_SIZE); - if (bp == NULL) - return NULL; - -#if 0 /* XXX removed for PyPy - #ifdef PYMALLOC_DEBUG */ - if (Py_GETENV("PYTHONMALLOCSTATS")) - _PyObject_DebugMallocStats(); -#endif - - /* arenabase <- first pool-aligned address in the arena - nfreepools <- number of whole pools that fit after alignment */ - arenabase = bp; - nfreepools = ARENA_SIZE / POOL_SIZE; - assert(POOL_SIZE * nfreepools == ARENA_SIZE); - excess = (uint) ((long)bp & POOL_SIZE_MASK); - if (excess != 0) { - --nfreepools; - arenabase += POOL_SIZE - excess; - } - - /* Make room for a new entry in the arenas vector. */ - if (arenas == NULL) { - assert(narenas == 0 && maxarenas == 0); - arenas = (uptr *)malloc(16 * sizeof(*arenas)); - if (arenas == NULL) - goto error; - maxarenas = 16; - } - else if (narenas == maxarenas) { - /* Grow arenas. - * - * Exceedingly subtle: Someone may be calling the pymalloc - * free via PyMem_{DEL, Del, FREE, Free} without holding the - *.GIL. Someone else may simultaneously be calling the - * pymalloc malloc while holding the GIL via, e.g., - * PyObject_New. Now the pymalloc free may index into arenas - * for an address check, while the pymalloc malloc calls - * new_arena and we end up here to grow a new arena *and* - * grow the arenas vector. If the value for arenas pymalloc - * free picks up "vanishes" during this resize, anything may - * happen, and it would be an incredibly rare bug. Therefore - * the code here takes great pains to make sure that, at every - * moment, arenas always points to an intact vector of - * addresses. It doesn't matter whether arenas points to a - * wholly up-to-date vector when pymalloc free checks it in - * this case, because the only legal (and that even this is - * legal is debatable) way to call PyMem_{Del, etc} while not - * holding the GIL is if the memory being released is not - * object memory, i.e. if the address check in pymalloc free - * is supposed to fail. Having an incomplete vector can't - * make a supposed-to-fail case succeed by mistake (it could - * only make a supposed-to-succeed case fail by mistake). - * - * In addition, without a lock we can't know for sure when - * an old vector is no longer referenced, so we simply let - * old vectors leak. - * - * And on top of that, since narenas and arenas can't be - * changed as-a-pair atomically without a lock, we're also - * careful to declare them volatile and ensure that we change - * arenas first. This prevents another thread from picking - * up an narenas value too large for the arenas value it - * reads up (arenas never shrinks). - * - * Read the above 50 times before changing anything in this - * block. - */ - uptr *p; - uint newmax = maxarenas << 1; - if (newmax <= maxarenas) /* overflow */ - goto error; - p = (uptr *)malloc(newmax * sizeof(*arenas)); - if (p == NULL) - goto error; - memcpy(p, arenas, narenas * sizeof(*arenas)); - arenas = p; /* old arenas deliberately leaked */ - maxarenas = newmax; - } - - /* Append the new arena address to arenas. */ - assert(narenas < maxarenas); - arenas[narenas] = (uptr)bp; - ++narenas; /* can't overflow, since narenas < maxarenas before */ - return bp; - -error: - free(bp); - nfreepools = 0; - return NULL; -} - -/* Return true if and only if P is an address that was allocated by - * pymalloc. I must be the index into arenas that the address claims - * to come from. - * - * Tricky: Letting B be the arena base address in arenas[I], P belongs to the - * arena if and only if - * B <= P < B + ARENA_SIZE - * Subtracting B throughout, this is true iff - * 0 <= P-B < ARENA_SIZE - * By using unsigned arithmetic, the "0 <=" half of the test can be skipped. - * - * Obscure: A PyMem "free memory" function can call the pymalloc free or - * realloc before the first arena has been allocated. arenas is still - * NULL in that case. We're relying on that narenas is also 0 in that case, - * so the (I) < narenas must be false, saving us from trying to index into - * a NULL arenas. - */ -#define Py_ADDRESS_IN_RANGE(P, POOL) \ - ((POOL)->arenaindex < narenas && \ - (uptr)(P) - arenas[(POOL)->arenaindex] < (uptr)ARENA_SIZE) - -/* This is only useful when running memory debuggers such as - * Purify or Valgrind. Uncomment to use. - * -#define Py_USING_MEMORY_DEBUGGER - */ - -#ifdef Py_USING_MEMORY_DEBUGGER - -/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design - * This leads to thousands of spurious warnings when using - * Purify or Valgrind. By making a function, we can easily - * suppress the uninitialized memory reads in this one function. - * So we won't ignore real errors elsewhere. - * - * Disable the macro and use a function. - */ - -#undef Py_ADDRESS_IN_RANGE - -/* Don't make static, to ensure this isn't inlined. */ -int Py_ADDRESS_IN_RANGE(void *P, poolp pool); -#endif - -/*==========================================================================*/ - -/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct - * from all other currently live pointers. This may not be possible. - */ - -/* - * The basic blocks are ordered by decreasing execution frequency, - * which minimizes the number of jumps in the most common cases, - * improves branching prediction and instruction scheduling (small - * block allocations typically result in a couple of instructions). - * Unless the optimizer reorders everything, being too smart... - */ - -#undef PyObject_Malloc -void * -PyObject_Malloc(size_t nbytes) -{ - block *bp; - poolp pool; - poolp next; - uint size; - - /* - * This implicitly redirects malloc(0). - */ - if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) { - LOCK(); - /* - * Most frequent paths first - */ - size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT; - pool = usedpools[size + size]; - if (pool != pool->nextpool) { - /* - * There is a used pool for this size class. - * Pick up the head block of its free list. - */ - ++pool->ref.count; - bp = pool->freeblock; - assert(bp != NULL); - if ((pool->freeblock = *(block **)bp) != NULL) { - UNLOCK(); - return (void *)bp; - } - /* - * Reached the end of the free list, try to extend it - */ - if (pool->nextoffset <= pool->maxnextoffset) { - /* - * There is room for another block - */ - pool->freeblock = (block *)pool + - pool->nextoffset; - pool->nextoffset += INDEX2SIZE(size); - *(block **)(pool->freeblock) = NULL; - UNLOCK(); - return (void *)bp; - } - /* - * Pool is full, unlink from used pools - */ - next = pool->nextpool; - pool = pool->prevpool; - next->prevpool = pool; - pool->nextpool = next; - UNLOCK(); - return (void *)bp; - } - /* - * Try to get a cached free pool - */ - pool = freepools; - if (pool != NULL) { - /* - * Unlink from cached pools - */ - freepools = pool->nextpool; - init_pool: - /* - * Frontlink to used pools - */ - next = usedpools[size + size]; /* == prev */ - pool->nextpool = next; - pool->prevpool = next; - next->nextpool = pool; - next->prevpool = pool; - pool->ref.count = 1; - if (pool->szidx == size) { - /* - * Luckily, this pool last contained blocks - * of the same size class, so its header - * and free list are already initialized. - */ - bp = pool->freeblock; - pool->freeblock = *(block **)bp; - UNLOCK(); - return (void *)bp; - } - /* - * Initialize the pool header, set up the free list to - * contain just the second block, and return the first - * block. - */ - pool->szidx = size; - size = INDEX2SIZE(size); - bp = (block *)pool + POOL_OVERHEAD; - pool->nextoffset = POOL_OVERHEAD + (size << 1); - pool->maxnextoffset = POOL_SIZE - size; - pool->freeblock = bp + size; - *(block **)(pool->freeblock) = NULL; - UNLOCK(); - return (void *)bp; - } - /* - * Allocate new pool - */ - if (nfreepools) { - commit_pool: - --nfreepools; - pool = (poolp)arenabase; - arenabase += POOL_SIZE; - pool->arenaindex = narenas - 1; - pool->szidx = DUMMY_SIZE_IDX; - goto init_pool; - } - /* - * Allocate new arena - */ -#ifdef WITH_MEMORY_LIMITS - if (!(narenas < MAX_ARENAS)) { - UNLOCK(); - goto redirect; - } -#endif - bp = new_arena(); - if (bp != NULL) - goto commit_pool; - UNLOCK(); - goto redirect; - } - - /* The small block allocator ends here. */ - -redirect: - /* - * Redirect the original request to the underlying (libc) allocator. - * We jump here on bigger requests, on error in the code above (as a - * last chance to serve the request) or when the max memory limit - * has been reached. - */ - if (nbytes == 0) - nbytes = 1; - return (void *)malloc(nbytes); -} - -/* free */ - -#undef PyObject_Free -void -PyObject_Free(void *p) -{ - poolp pool; - block *lastfree; - poolp next, prev; - uint size; - - if (p == NULL) /* free(NULL) has no effect */ - return; - - pool = POOL_ADDR(p); - if (Py_ADDRESS_IN_RANGE(p, pool)) { - /* We allocated this address. */ - LOCK(); - /* - * Link p to the start of the pool's freeblock list. Since - * the pool had at least the p block outstanding, the pool - * wasn't empty (so it's already in a usedpools[] list, or - * was full and is in no list -- it's not in the freeblocks - * list in any case). - */ - assert(pool->ref.count > 0); /* else it was empty */ - *(block **)p = lastfree = pool->freeblock; - pool->freeblock = (block *)p; - if (lastfree) { - /* - * freeblock wasn't NULL, so the pool wasn't full, - * and the pool is in a usedpools[] list. - */ - if (--pool->ref.count != 0) { - /* pool isn't empty: leave it in usedpools */ - UNLOCK(); - return; - } - /* - * Pool is now empty: unlink from usedpools, and - * link to the front of freepools. This ensures that - * previously freed pools will be allocated later - * (being not referenced, they are perhaps paged out). - */ - next = pool->nextpool; - prev = pool->prevpool; - next->prevpool = prev; - prev->nextpool = next; - /* Link to freepools. This is a singly-linked list, - * and pool->prevpool isn't used there. - */ - pool->nextpool = freepools; - freepools = pool; - UNLOCK(); - return; - } - /* - * Pool was full, so doesn't currently live in any list: - * link it to the front of the appropriate usedpools[] list. - * This mimics LRU pool usage for new allocations and - * targets optimal filling when several pools contain - * blocks of the same size class. - */ - --pool->ref.count; - assert(pool->ref.count > 0); /* else the pool is empty */ - size = pool->szidx; - next = usedpools[size + size]; - prev = next->prevpool; - /* insert pool before next: prev <-> pool <-> next */ - pool->nextpool = next; - pool->prevpool = prev; - next->prevpool = pool; - prev->nextpool = pool; - UNLOCK(); - return; - } - - /* We didn't allocate this address. */ - free(p); -} - -/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0, - * then as the Python docs promise, we do not treat this like free(p), and - * return a non-NULL result. - */ - -#undef PyObject_Realloc -void * -PyObject_Realloc(void *p, size_t nbytes) -{ - void *bp; - poolp pool; - uint size; - - if (p == NULL) - return PyObject_Malloc(nbytes); - - pool = POOL_ADDR(p); - if (Py_ADDRESS_IN_RANGE(p, pool)) { - /* We're in charge of this block */ - size = INDEX2SIZE(pool->szidx); - if (nbytes <= size) { - /* The block is staying the same or shrinking. If - * it's shrinking, there's a tradeoff: it costs - * cycles to copy the block to a smaller size class, - * but it wastes memory not to copy it. The - * compromise here is to copy on shrink only if at - * least 25% of size can be shaved off. - */ - if (4 * nbytes > 3 * size) { - /* It's the same, - * or shrinking and new/old > 3/4. - */ - return p; - } - size = nbytes; - } - bp = PyObject_Malloc(nbytes); - if (bp != NULL) { - memcpy(bp, p, size); - PyObject_Free(p); - } - return bp; - } - /* We're not managing this block. If nbytes <= - * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this - * block. However, if we do, we need to copy the valid data from - * the C-managed block to one of our blocks, and there's no portable - * way to know how much of the memory space starting at p is valid. - * As bug 1185883 pointed out the hard way, it's possible that the - * C-managed block is "at the end" of allocated VM space, so that - * a memory fault can occur if we try to copy nbytes bytes starting - * at p. Instead we punt: let C continue to manage this block. - */ - if (nbytes) - return realloc(p, nbytes); - /* C doesn't define the result of realloc(p, 0) (it may or may not - * return NULL then), but Python's docs promise that nbytes==0 never - * returns NULL. We don't pass 0 to realloc(), to avoid that endcase - * to begin with. Even then, we can't be sure that realloc() won't - * return NULL. - */ - bp = realloc(p, 1); - return bp ? bp : p; -} - -#else /* ! WITH_PYMALLOC */ - -/*==========================================================================*/ -/* pymalloc not enabled: Redirect the entry points to malloc. These will - * only be used by extensions that are compiled with pymalloc enabled. */ - -void * -PyObject_Malloc(size_t n) -{ - return PyMem_MALLOC(n); -} - -void * -PyObject_Realloc(void *p, size_t n) -{ - return PyMem_REALLOC(p, n); -} - -void -PyObject_Free(void *p) -{ - PyMem_FREE(p); -} -#endif /* WITH_PYMALLOC */ - -#ifdef PYMALLOC_DEBUG -/*==========================================================================*/ -/* A x-platform debugging allocator. This doesn't manage memory directly, - * it wraps a real allocator, adding extra debugging info to the memory blocks. - */ - -/* XXX added for PyPy for stand-alone usage */ -void Py_FatalError(const char *msg) -{ - fprintf(stderr, "Py_FatalError() called in obmalloc!\n%s\n", msg); - abort(); -} -#define PyOS_snprintf snprintf -/* end of XXX */ - - -/* Special bytes broadcast into debug memory blocks at appropriate times. - * Strings of these are unlikely to be valid addresses, floats, ints or - * 7-bit ASCII. - */ -#undef CLEANBYTE -#undef DEADBYTE -#undef FORBIDDENBYTE -#define CLEANBYTE 0xCB /* clean (newly allocated) memory */ -#define DEADBYTE 0xDB /* dead (newly freed) memory */ -#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */ - -static ulong serialno = 0; /* incremented on each debug {m,re}alloc */ - -/* serialno is always incremented via calling this routine. The point is - to supply a single place to set a breakpoint. -*/ -static void -bumpserialno(void) -{ - ++serialno; -} - - -/* Read 4 bytes at p as a big-endian ulong. */ -static ulong -read4(const void *p) -{ - const uchar *q = (const uchar *)p; - return ((ulong)q[0] << 24) | - ((ulong)q[1] << 16) | - ((ulong)q[2] << 8) | - (ulong)q[3]; -} - -/* Write the 4 least-significant bytes of n as a big-endian unsigned int, - MSB at address p, LSB at p+3. */ -static void -write4(void *p, ulong n) -{ - uchar *q = (uchar *)p; - q[0] = (uchar)((n >> 24) & 0xff); - q[1] = (uchar)((n >> 16) & 0xff); - q[2] = (uchar)((n >> 8) & 0xff); - q[3] = (uchar)( n & 0xff); -} - -#ifdef Py_DEBUG -/* Is target in the list? The list is traversed via the nextpool pointers. - * The list may be NULL-terminated, or circular. Return 1 if target is in - * list, else 0. - */ -static int -pool_is_in_list(const poolp target, poolp list) -{ - poolp origlist = list; - assert(target != NULL); - if (list == NULL) - return 0; - do { - if (target == list) - return 1; - list = list->nextpool; - } while (list != NULL && list != origlist); - return 0; -} - -#else -#define pool_is_in_list(X, Y) 1 - -#endif /* Py_DEBUG */ - -/* The debug malloc asks for 16 extra bytes and fills them with useful stuff, - here calling the underlying malloc's result p: - -p[0:4] - Number of bytes originally asked for. 4-byte unsigned integer, - big-endian (easier to read in a memory dump). -p[4:8] - Copies of FORBIDDENBYTE. Used to catch under- writes and reads. -p[8:8+n] - The requested memory, filled with copies of CLEANBYTE. - Used to catch reference to uninitialized memory. - &p[8] is returned. Note that this is 8-byte aligned if pymalloc - handled the request itself. -p[8+n:8+n+4] - Copies of FORBIDDENBYTE. Used to catch over- writes and reads. -p[8+n+4:8+n+8] - A serial number, incremented by 1 on each call to _PyObject_DebugMalloc - and _PyObject_DebugRealloc. - 4-byte unsigned integer, big-endian. - If "bad memory" is detected later, the serial number gives an - excellent way to set a breakpoint on the next run, to capture the - instant at which this block was passed out. -*/ - -void * -_PyObject_DebugMalloc(size_t nbytes) -{ - uchar *p; /* base address of malloc'ed block */ - uchar *tail; /* p + 8 + nbytes == pointer to tail pad bytes */ - size_t total; /* nbytes + 16 */ - - bumpserialno(); - total = nbytes + 16; - if (total < nbytes || (total >> 31) > 1) { - /* overflow, or we can't represent it in 4 bytes */ - /* Obscure: can't do (total >> 32) != 0 instead, because - C doesn't define what happens for a right-shift of 32 - when size_t is a 32-bit type. At least C guarantees - size_t is an unsigned type. */ - return NULL; - } - - p = (uchar *)PyObject_Malloc(total); - if (p == NULL) - return NULL; - - write4(p, nbytes); - p[4] = p[5] = p[6] = p[7] = FORBIDDENBYTE; - - if (nbytes > 0) - memset(p+8, CLEANBYTE, nbytes); - - tail = p + 8 + nbytes; - tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE; - write4(tail + 4, serialno); - - return p+8; -} - -/* The debug free first checks the 8 bytes on each end for sanity (in - particular, that the FORBIDDENBYTEs are still intact). - Then fills the original bytes with DEADBYTE. - Then calls the underlying free. -*/ -void -_PyObject_DebugFree(void *p) -{ - uchar *q = (uchar *)p; - size_t nbytes; - - if (p == NULL) - return; - _PyObject_DebugCheckAddress(p); - nbytes = read4(q-8); - if (nbytes > 0) - memset(q, DEADBYTE, nbytes); - PyObject_Free(q-8); -} - -void * -_PyObject_DebugRealloc(void *p, size_t nbytes) -{ - uchar *q = (uchar *)p; - uchar *tail; - size_t total; /* nbytes + 16 */ - size_t original_nbytes; - - if (p == NULL) - return _PyObject_DebugMalloc(nbytes); - - _PyObject_DebugCheckAddress(p); - bumpserialno(); - original_nbytes = read4(q-8); - total = nbytes + 16; - if (total < nbytes || (total >> 31) > 1) { - /* overflow, or we can't represent it in 4 bytes */ - return NULL; - } - - if (nbytes < original_nbytes) { - /* shrinking: mark old extra memory dead */ - memset(q + nbytes, DEADBYTE, original_nbytes - nbytes); - } - - /* Resize and add decorations. */ - q = (uchar *)PyObject_Realloc(q-8, total); - if (q == NULL) - return NULL; - - write4(q, nbytes); - assert(q[4] == FORBIDDENBYTE && - q[5] == FORBIDDENBYTE && - q[6] == FORBIDDENBYTE && - q[7] == FORBIDDENBYTE); - q += 8; - tail = q + nbytes; - tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE; - write4(tail + 4, serialno); - - if (nbytes > original_nbytes) { - /* growing: mark new extra memory clean */ - memset(q + original_nbytes, CLEANBYTE, - nbytes - original_nbytes); - } - - return q; -} - -/* Check the forbidden bytes on both ends of the memory allocated for p. - * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, - * and call Py_FatalError to kill the program. - */ - void -_PyObject_DebugCheckAddress(const void *p) -{ - const uchar *q = (const uchar *)p; - char *msg; - ulong nbytes; - const uchar *tail; - int i; - - if (p == NULL) { - msg = "didn't expect a NULL pointer"; - goto error; - } - - /* Check the stuff at the start of p first: if there's underwrite - * corruption, the number-of-bytes field may be nuts, and checking - * the tail could lead to a segfault then. - */ - for (i = 4; i >= 1; --i) { - if (*(q-i) != FORBIDDENBYTE) { - msg = "bad leading pad byte"; - goto error; - } - } - - nbytes = read4(q-8); - tail = q + nbytes; - for (i = 0; i < 4; ++i) { - if (tail[i] != FORBIDDENBYTE) { - msg = "bad trailing pad byte"; - goto error; - } - } - - return; - -error: - _PyObject_DebugDumpAddress(p); - Py_FatalError(msg); -} - -/* Display info to stderr about the memory block at p. */ -void -_PyObject_DebugDumpAddress(const void *p) -{ - const uchar *q = (const uchar *)p; - const uchar *tail; - ulong nbytes, serial; - int i; - - fprintf(stderr, "Debug memory block at address p=%p:\n", p); - if (p == NULL) - return; - - nbytes = read4(q-8); - fprintf(stderr, " %lu bytes originally requested\n", nbytes); - - /* In case this is nuts, check the leading pad bytes first. */ - fputs(" The 4 pad bytes at p-4 are ", stderr); - if (*(q-4) == FORBIDDENBYTE && - *(q-3) == FORBIDDENBYTE && - *(q-2) == FORBIDDENBYTE && - *(q-1) == FORBIDDENBYTE) { - fputs("FORBIDDENBYTE, as expected.\n", stderr); - } - else { - fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", - FORBIDDENBYTE); - for (i = 4; i >= 1; --i) { - const uchar byte = *(q-i); - fprintf(stderr, " at p-%d: 0x%02x", i, byte); - if (byte != FORBIDDENBYTE) - fputs(" *** OUCH", stderr); - fputc('\n', stderr); - } - - fputs(" Because memory is corrupted at the start, the " - "count of bytes requested\n" - " may be bogus, and checking the trailing pad " - "bytes may segfault.\n", stderr); - } - - tail = q + nbytes; - fprintf(stderr, " The 4 pad bytes at tail=%p are ", tail); - if (tail[0] == FORBIDDENBYTE && - tail[1] == FORBIDDENBYTE && - tail[2] == FORBIDDENBYTE && - tail[3] == FORBIDDENBYTE) { - fputs("FORBIDDENBYTE, as expected.\n", stderr); - } - else { - fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", - FORBIDDENBYTE); - for (i = 0; i < 4; ++i) { - const uchar byte = tail[i]; - fprintf(stderr, " at tail+%d: 0x%02x", - i, byte); - if (byte != FORBIDDENBYTE) - fputs(" *** OUCH", stderr); - fputc('\n', stderr); - } - } - - serial = read4(tail+4); - fprintf(stderr, " The block was made by call #%lu to " - "debug malloc/realloc.\n", serial); - - if (nbytes > 0) { - int i = 0; - fputs(" Data at p:", stderr); - /* print up to 8 bytes at the start */ - while (q < tail && i < 8) { - fprintf(stderr, " %02x", *q); - ++i; - ++q; - } - /* and up to 8 at the end */ - if (q < tail) { - if (tail - q > 8) { - fputs(" ...", stderr); - q = tail - 8; - } - while (q < tail) { - fprintf(stderr, " %02x", *q); - ++q; - } - } - fputc('\n', stderr); - } -} - -static ulong -printone(const char* msg, ulong value) -{ - int i, k; - char buf[100]; - ulong origvalue = value; - - fputs(msg, stderr); - for (i = (int)strlen(msg); i < 35; ++i) - fputc(' ', stderr); - fputc('=', stderr); - - /* Write the value with commas. */ - i = 22; - buf[i--] = '\0'; - buf[i--] = '\n'; - k = 3; - do { - ulong nextvalue = value / 10UL; - uint digit = value - nextvalue * 10UL; - value = nextvalue; - buf[i--] = (char)(digit + '0'); - --k; - if (k == 0 && value && i >= 0) { - k = 3; - buf[i--] = ','; - } - } while (value && i >= 0); - - while (i >= 0) - buf[i--] = ' '; - fputs(buf, stderr); - - return origvalue; -} - -/* Print summary info to stderr about the state of pymalloc's structures. - * In Py_DEBUG mode, also perform some expensive internal consistency - * checks. - */ -void -_PyObject_DebugMallocStats(void) -{ - uint i; - const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; - /* # of pools, allocated blocks, and free blocks per class index */ - ulong numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; - ulong numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; - ulong numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; - /* total # of allocated bytes in used and full pools */ - ulong allocated_bytes = 0; - /* total # of available bytes in used pools */ - ulong available_bytes = 0; - /* # of free pools + pools not yet carved out of current arena */ - uint numfreepools = 0; - /* # of bytes for arena alignment padding */ - ulong arena_alignment = 0; - /* # of bytes in used and full pools used for pool_headers */ - ulong pool_header_bytes = 0; - /* # of bytes in used and full pools wasted due to quantization, - * i.e. the necessarily leftover space at the ends of used and - * full pools. - */ - ulong quantization = 0; - /* running total -- should equal narenas * ARENA_SIZE */ - ulong total; - char buf[128]; - - fprintf(stderr, "Small block threshold = %d, in %u size classes.\n", - SMALL_REQUEST_THRESHOLD, numclasses); - - for (i = 0; i < numclasses; ++i) - numpools[i] = numblocks[i] = numfreeblocks[i] = 0; - - /* Because full pools aren't linked to from anything, it's easiest - * to march over all the arenas. If we're lucky, most of the memory - * will be living in full pools -- would be a shame to miss them. - */ - for (i = 0; i < narenas; ++i) { - uint poolsinarena; - uint j; - uptr base = arenas[i]; - - /* round up to pool alignment */ - poolsinarena = ARENA_SIZE / POOL_SIZE; - if (base & (uptr)POOL_SIZE_MASK) { - --poolsinarena; - arena_alignment += POOL_SIZE; - base &= ~(uptr)POOL_SIZE_MASK; - base += POOL_SIZE; - } - - if (i == narenas - 1) { - /* current arena may have raw memory at the end */ - numfreepools += nfreepools; - poolsinarena -= nfreepools; - } - - /* visit every pool in the arena */ - for (j = 0; j < poolsinarena; ++j, base += POOL_SIZE) { - poolp p = (poolp)base; - const uint sz = p->szidx; - uint freeblocks; - - if (p->ref.count == 0) { - /* currently unused */ - ++numfreepools; - assert(pool_is_in_list(p, freepools)); - continue; - } - ++numpools[sz]; - numblocks[sz] += p->ref.count; - freeblocks = NUMBLOCKS(sz) - p->ref.count; - numfreeblocks[sz] += freeblocks; -#ifdef Py_DEBUG - if (freeblocks > 0) - assert(pool_is_in_list(p, usedpools[sz + sz])); -#endif - } - } - - fputc('\n', stderr); - fputs("class size num pools blocks in use avail blocks\n" - "----- ---- --------- ------------- ------------\n", - stderr); - - for (i = 0; i < numclasses; ++i) { - ulong p = numpools[i]; - ulong b = numblocks[i]; - ulong f = numfreeblocks[i]; - uint size = INDEX2SIZE(i); - if (p == 0) { - assert(b == 0 && f == 0); - continue; - } - fprintf(stderr, "%5u %6u %11lu %15lu %13lu\n", - i, size, p, b, f); - allocated_bytes += b * size; - available_bytes += f * size; - pool_header_bytes += p * POOL_OVERHEAD; - quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); - } - fputc('\n', stderr); - (void)printone("# times object malloc called", serialno); - - PyOS_snprintf(buf, sizeof(buf), - "%u arenas * %d bytes/arena", narenas, ARENA_SIZE); - (void)printone(buf, (ulong)narenas * ARENA_SIZE); - - fputc('\n', stderr); - - total = printone("# bytes in allocated blocks", allocated_bytes); - total += printone("# bytes in available blocks", available_bytes); - - PyOS_snprintf(buf, sizeof(buf), - "%u unused pools * %d bytes", numfreepools, POOL_SIZE); - total += printone(buf, (ulong)numfreepools * POOL_SIZE); - - total += printone("# bytes lost to pool headers", pool_header_bytes); - total += printone("# bytes lost to quantization", quantization); - total += printone("# bytes lost to arena alignment", arena_alignment); - (void)printone("Total", total); -} - -#endif /* PYMALLOC_DEBUG */ - -#ifdef Py_USING_MEMORY_DEBUGGER -/* Make this function last so gcc won't inline it - since the definition is after the reference. */ -int -Py_ADDRESS_IN_RANGE(void *P, poolp pool) -{ - return ((pool->arenaindex) < narenas && - (uptr)(P) - arenas[pool->arenaindex] < (uptr)ARENA_SIZE); -} -#endif _______________________________________________ pypy-commit mailing list pypy-commit@python.org https://mail.python.org/mailman/listinfo/pypy-commit