[I've just seen this bounce.  Please always try to write to the list from a 
subscribed address]

----------------------------------------------------------------------
De: Grace Li <fullofgrac...@gmail.com>
A: pytables-users@lists.sourceforge.net
Data: Diumenge 18:03:50
>
> Dear users,
>
> I'm a new adopter of pytables and I am trying to convert my flat data
> files into pytable files (h5 files).
> My data files are basically columns of integers (some containing
> mostly zeros).  My script is reading in each of these files using the
> numpy.genfromtxt() and then appending the numpy array with
> tables.append().  I am currently storing all the data as columns in a
> table.
>
> What I noticed was that after loading in the data and doing a ptdump
> -d on the written pytable file, I find that
> I am getting these extra rows appearing in between, what I expect to
> be the data that I"ve loaded into the table.  For example, please see
> the attached part of my test datafile that I was working with and the
> respective outputs from ptdump -d below.
>
> I was wondering if anyone has seen this behavior before?  The system
> I'm running on is a large computing linux cluster with pytables
> version 2.2.1dev, numpy 1.3.0, hdf5 1.8.5.
>
> However, just to note that, my script works as expected on my local
> machine (Macbook Pro running on Snow Leopard 10.6) with pytables
> version 2.2.1 and numpy 1.4.1 and it works properly (ie. I do not get
> this behavior).
>
> If anyone has seen this or has any suggestions, I would greatly
> appreciate your help!
>
> Thanks,
>
> Grace
>
> >>>>>>>>>>>> BEGIN Example >>>>>>>>>>
>
> Sample text data file passed to genfromtxt():
>
> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
> 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>
> Numpy array that is created with sample data file:
> array([[  0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [  2.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [  4.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [  6.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [  8.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [ 10.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [ 12.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.],
>        [ 14.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,
>           0.,   0.,   0.,   0.,   0.]])
>
>
> ptdump -d output from the written hdf5 file:
>
> [0] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [1] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [2] (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [3] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [4] (4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [5] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [6] (6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [7] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [8] (8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [9] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [10] (10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [11] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [12] (12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [13] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [14] (14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> [15] (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Well, if that works with your local machine, you may want to try installing a 
recent version of numpy (for example 1.5.0) in your production machine.  You 
may also want to install a production release of pytables there (2.2).

Hope this helps,

-- 
Francesc Alted

------------------------------------------------------------------------------
This SF.net Dev2Dev email is sponsored by:

Show off your parallel programming skills.
Enter the Intel(R) Threading Challenge 2010.
http://p.sf.net/sfu/intel-thread-sfd
_______________________________________________
Pytables-users mailing list
Pytables-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/pytables-users

Reply via email to