hi Anthony, thanks for you reply. My comparison is straight forward. Right now we are using C code and native C HDF5 (ver 1.6.5) routines to create datasets, groups and organize our sampling data in HDF5 file. In this aspect we tend to create numerous tables and datasets ( single dimensions ) in the HDF5 file. After going through the documentation of PyTables i wrote a simple python script to create 3 groups and around 10,000 datasets in each group. I am not expecting pytables to be as fast as C. But what i am seeing is a huge difference on the performance front. here you go with script..
import warnings warnings.simplefilter("ignore") import numpy from tables import * import time tstart = time.clock() h5file = openFile('test5.h5', mode='w') groups = h5file.createGroup("/", 'Parameters_test', 'Parameters Group') # create groups atom = Float32Atom() cond_name = [ "cond1", "cond2", "cond3" ] #filters = Filters(complevel=1, complib='zlib' ) data_array = numpy.arange(2000) # dummy data array for counter in range(len(cond_name)): get_gp = h5file.createGroup( groups, str(cond_name[counter]), str(cond_name[counter]) ) for i in range(10000): arr = h5file.createEArray(get_gp, str(i), atom, (0,),"E array",chunkshape=(1000,) ) arr.append(data_array) h5file.close() print time.clock() - tstart, "seconds" Regards Dhananjaya ------------------------------------------------------------------------------ Colocation vs. Managed Hosting A question and answer guide to determining the best fit for your organization - today and in the future. http://p.sf.net/sfu/internap-sfd2d _______________________________________________ Pytables-users mailing list Pytables-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/pytables-users