============================
  Announcing Numexpr 2.1RC1
============================

Numexpr is a fast numerical expression evaluator for NumPy.  With it,
expressions that operate on arrays (like "3*a+4*b") are accelerated
and use less memory than doing the same calculation in Python.

It wears multi-threaded capabilities, as well as support for Intel's
VML library, which allows for squeezing the last drop of performance
out of your multi-core processors.

What's new
==========

This version adds compatibility for Python 3.  A bunch of thanks to 
Antonio Valentino for his excelent work on this.I apologize for taking 
so long in releasing his contributions.

In case you want to know more in detail what has changed in this
version, see:

http://code.google.com/p/numexpr/wiki/ReleaseNotes

or have a look at RELEASE_NOTES.txt in the tarball.

Where I can find Numexpr?
=========================

The project is hosted at Google code in:

http://code.google.com/p/numexpr/

This is a release candidate 1, so it will not be available on the PyPi 
repository.  I'll post it there when the final version will released.

Share your experience
=====================

Let us know of any bugs, suggestions, gripes, kudos, etc. you may
have.


Enjoy!

--
Francesc Alted


------------------------------------------------------------------------------
Precog is a next-generation analytics platform capable of advanced
analytics on semi-structured data. The platform includes APIs for building
apps and a phenomenal toolset for data science. Developers can use
our toolset for easy data analysis & visualization. Get a free account!
http://www2.precog.com/precogplatform/slashdotnewsletter
_______________________________________________
Pytables-users mailing list
Pytables-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/pytables-users

Reply via email to