https://github.com/python/cpython/commit/546ac0191f65013b10b8c7943b9e38df7499abf6
commit: 546ac0191f65013b10b8c7943b9e38df7499abf6
branch: 3.12
author: Hugo van Kemenade <1324225+hug...@users.noreply.github.com>
committer: rhettinger <rhettin...@users.noreply.github.com>
date: 2025-02-20T17:32:35-06:00
summary:

[3.12] Itertool recipe additions (gh-127483) (gh-130362)

files:
M Doc/library/itertools.rst

diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst
index b1b7b630a5ecbb..c71e8d2a6142cb 100644
--- a/Doc/library/itertools.rst
+++ b/Doc/library/itertools.rst
@@ -829,6 +829,11 @@ and :term:`generators <generator>` which incur interpreter 
overhead.
        "Returns the sequence elements n times."
        return chain.from_iterable(repeat(tuple(iterable), n))
 
+   def loops(n):
+       "Loop n times. Like range(n) but without creating integers."
+       # for _ in loops(100): ...
+       return repeat(None, n)
+
    def tail(n, iterable):
        "Return an iterator over the last n items."
        # tail(3, 'ABCDEFG') → E F G
@@ -1060,6 +1065,11 @@ The following recipes have a more mathematical flavor:
            data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
        yield from iter_index(data, 1, start=3)
 
+   def is_prime(n):
+       "Return True if n is prime."
+       # is_prime(1_000_000_000_000_403) → True
+       return n > 1 and all(n % p for p in sieve(math.isqrt(n) + 1))
+
    def factor(n):
        "Prime factors of n."
        # factor(99) → 3 3 11
@@ -1165,6 +1175,17 @@ The following recipes have a more mathematical flavor:
     >>> list(islice(tabulate(lambda x: 2*x), 4))
     [0, 2, 4, 6]
 
+
+    >>> for _ in loops(5):
+    ...     print('hi')
+    ...
+    hi
+    hi
+    hi
+    hi
+    hi
+
+
     >>> list(tail(3, 'ABCDEFG'))
     ['E', 'F', 'G']
     >>> # Verify the input is consumed greedily
@@ -1424,6 +1445,24 @@ The following recipes have a more mathematical flavor:
     >>> set(sieve(10_000)).isdisjoint(carmichael)
     True
 
+
+    >>> small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
+    >>> list(filter(is_prime, range(-100, 100))) == small_primes
+    True
+    >>> carmichael = {561, 1105, 1729, 2465, 2821, 6601, 8911}  # 
https://oeis.org/A002997
+    >>> any(map(is_prime, carmichael))
+    False
+    >>> # https://www.wolframalpha.com/input?i=is+128884753939+prime
+    >>> is_prime(128_884_753_939)           # large prime
+    True
+    >>> is_prime(999953 * 999983)           # large semiprime
+    False
+    >>> is_prime(1_000_000_000_000_007)     # factor() example
+    False
+    >>> is_prime(1_000_000_000_000_403)     # factor() example
+    True
+
+
     >>> list(factor(99))                    # Code example 1
     [3, 3, 11]
     >>> list(factor(1_000_000_000_000_007)) # Code example 2

_______________________________________________
Python-checkins mailing list -- python-checkins@python.org
To unsubscribe send an email to python-checkins-le...@python.org
https://mail.python.org/mailman3/lists/python-checkins.python.org/
Member address: arch...@mail-archive.com

Reply via email to