https://github.com/python/cpython/commit/798f791dafb9cc5109ac19b086e98cfa6b943cfd
commit: 798f791dafb9cc5109ac19b086e98cfa6b943cfd
branch: main
author: Raymond Hettinger <rhettin...@users.noreply.github.com>
committer: rhettinger <rhettin...@users.noreply.github.com>
date: 2025-07-09T10:23:46-07:00
summary:

Minor edit: Move comments closer to the code they describe (gh-136477)

files:
M Lib/random.py

diff --git a/Lib/random.py b/Lib/random.py
index 86d562f0b8aaf6..c89cbb755abac8 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -844,8 +844,8 @@ def binomialvariate(self, n=1, p=0.5):
         # BTRS: Transformed rejection with squeeze method by Wolfgang Hörmann
         # 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.8407&rep=rep1&type=pdf
         assert n*p >= 10.0 and p <= 0.5
-        setup_complete = False
 
+        setup_complete = False
         spq = _sqrt(n * p * (1.0 - p))  # Standard deviation of the 
distribution
         b = 1.15 + 2.53 * spq
         a = -0.0873 + 0.0248 * b + 0.01 * p
@@ -860,22 +860,23 @@ def binomialvariate(self, n=1, p=0.5):
             k = _floor((2.0 * a / us + b) * u + c)
             if k < 0 or k > n:
                 continue
+            v = random()
 
             # The early-out "squeeze" test substantially reduces
             # the number of acceptance condition evaluations.
-            v = random()
             if us >= 0.07 and v <= vr:
                 return k
 
-            # Acceptance-rejection test.
-            # Note, the original paper erroneously omits the call to log(v)
-            # when comparing to the log of the rescaled binomial distribution.
             if not setup_complete:
                 alpha = (2.83 + 5.1 / b) * spq
                 lpq = _log(p / (1.0 - p))
                 m = _floor((n + 1) * p)         # Mode of the distribution
                 h = _lgamma(m + 1) + _lgamma(n - m + 1)
                 setup_complete = True           # Only needs to be done once
+
+            # Acceptance-rejection test.
+            # Note, the original paper erroneously omits the call to log(v)
+            # when comparing to the log of the rescaled binomial distribution.
             v *= alpha / (a / (us * us) + b)
             if _log(v) <= h - _lgamma(k + 1) - _lgamma(n - k + 1) + (k - m) * 
lpq:
                 return k

_______________________________________________
Python-checkins mailing list -- python-checkins@python.org
To unsubscribe send an email to python-checkins-le...@python.org
https://mail.python.org/mailman3//lists/python-checkins.python.org
Member address: arch...@mail-archive.com

Reply via email to