I have recently switched from programming heavily in MATLAB to programming in 
Python. Hence I am having some issues running the Python code that I have 
written. I am using IPython with Anaconda2 on Windows 7 and using numPy and 
SciPy to integrate a system of ordinary differential equations. I have 
generalized the system of ODEs for any number 'N' of them.

I have two versions of code that do the same thing, and give the same error 
message. One version uses 'exec' and 'eval' heavily, and the other uses arrays 
heavily. Here is my code for the array version:

----------------------------------------------------------------------
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

#Constants and parameters
N = 2
K00 = np.logspace(0,3,101,10)
len1 = len(K00)
epsilon = 0.01
y0 = [0]*(3*N/2+3)
u1 = 0
u2 = 0
u3 = 0
Kplot = np.zeros((len1,1))
Pplot = np.zeros((len1,1))
S = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
KS = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
PS = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
Splot = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
KSplot = [np.zeros((len1,1)) for kkkk in range(N/2+1)]
PSplot = [np.zeros((len1,1)) for kkkk in range(N/2+1)]

for series in range(0,len1):
    K0 = K00[series]
    Q = 10
    r1 = 0.0001
    r2 = 0.001
    a = 0.001
    d = 0.001
    k = 0.999
    S10 = 1e5
    P0 = 1
    tfvec = np.tile(1e10,(1,5))
    tf = tfvec[0,0]
    time = np.linspace(0,tf,len1)

    #Defining dy/dt's
    def f(y,t):
        for alpha in range(0,(N/2+1)):
            S[alpha] = y[alpha]
        for beta in range((N/2)+1,N+1):
            KS[beta-N/2-1] = y[beta]
        for gamma in range(N+1,3*N/2+1):
            PS[gamma-N] = y[gamma]
        K = y[3*N/2+1]
        P = y[3*N/2+2]

        # The model equations
        ydot = np.zeros((3*N/2+3,1))
        B = range((N/2)+1,N+1)
        G = range(N+1,3*N/2+1)
        runsumPS = 0
        runsum1 = 0
        runsumKS = 0 
        runsum2 = 0

        for m in range(0,N/2):
            runsumPS = runsumPS + PS[m+1]
            runsum1 = runsum1 + S[m+1]
            runsumKS = runsumKS + KS[m]
            runsum2 = runsum2 + S[m]    
            ydot[B[m]] = a*K*S[m]-(d+k+r1)*KS[m]

        for i in range(0,N/2-1):
            ydot[G[i]] = a*P*S[i+1]-(d+k+r1)*PS[i+1]

        for p in range(1,N/2):
            ydot[p] = -S[p]*(r1+a*K+a*P)+k*KS[p-1]+ \
                      d*(PS[p]+KS[p])

        ydot[0] = Q-(r1+a*K)*S[0]+d*KS[0]+k*runsumPS
        ydot[N/2] = k*KS[N/2-1]-(r2+a*P)*S[N/2]+ \
                    d*PS[N/2]
        ydot[G[N/2-1]] = a*P*S[N/2]-(d+k+r2)*PS[N/2]
        ydot[3*N/2+1] = (d+k+r1)*runsumKS-a*K*runsum2
        ydot[3*N/2+2] = (d+k+r1)*(runsumPS-PS[N/2])- \
                        a*P*runsum1+(d+k+r2)*PS[N/2]
        
        for j in range(0,3*N/2+3):
            return ydot[j] 
                                                                                
           
    # Initial conditions
    y0[0] = S10
    for i in range(1,3*N/2+1):
        y0[i] = 0
    y0[3*N/2+1] = K0
    y0[3*N/2+2] = P0
    
    # Solve the DEs
    soln = odeint(f,y0,time,mxstep = 5000)
    for alpha in range(0,(N/2+1)):
        S[alpha] = soln[:,alpha]
    for beta in range((N/2)+1,N+1):
        KS[beta-N/2-1] = soln[:,beta]   
    for gamma in range(N+1,3*N/2+1):
        PS[gamma-N] = soln[:,gamma]
     
    for alpha in range(0,(N/2+1)):
        Splot[alpha][series] = soln[len1-1,alpha]
    for beta in range((N/2)+1,N+1):
        KSplot[beta-N/2-1][series] = soln[len1-1,beta]
    for gamma in range(N+1,3*N/2+1):
        PSplot[gamma-N][series] = soln[len1-1,gamma]
  
    for alpha in range(0,(N/2+1)):
        u1 = u1 + Splot[alpha]
    for beta in range((N/2)+1,N+1):
        u2 = u2 + KSplot[beta-N/2-1]
    for gamma in range(N+1,3*N/2+1):
        u3 = u3 + PSplot[gamma-N]

    K = soln[:,3*N/2+1]
    P = soln[:,3*N/2+2]
    Kplot[series] = soln[len1-1,3*N/2+1]
    Pplot[series] = soln[len1-1,3*N/2+2]
    utot = u1+u2+u3

#Plot
plt.plot(np.log10(K00),utot[:,0])
plt.show()
----------------------------------------------------------------------
ERROR MESSAGE:
RuntimeError: The size of the array returned by func (1) does not match the 
size of y0 (6).
----------------------------------------------------------------------

I am facing a RuntimeError in the ODE integrator step. Please help me resolve 
this. Thanks in advance.
-- 
https://mail.python.org/mailman/listinfo/python-list

Reply via email to