Hi,
a lot of people think that C (or C++) is faster than python, yes I agree,
but I think that's not the case with numpy, I believe numpy is faster than
C, at least in some cases.


*Is there another explanation ?Or where can find  a doc speaking  about the
subject?*Thanks a lot
Regards
Numpy implements vectorization for arrays, or I'm wrong. Anyway here is an
example Let's look at the following case:
Here is the result on my laptop i3:

Labs$ *python3 tempsExe.py  50000*
  sum with Python: 1250025000 and NumPy 1250025000
      time used Python Sum: * 37.28 sec *
      time used  Numpy Sum:  *1.85 sec*

Labs$ *./tt    50000 *


*   CPU  time :7.521730    The value : 1250025000 *
--------------------------------------------

This is the Python3 program :

import timeit as it
import numpy as np
import sys
try :
n=eval(sys.argv[1])
except:
print ("needs integer as argument") ; exit()

a=range(1,n+1)
b=np.array(a)
def func1():     return sum(a)
def func2(): return np.sum(b)

print(f"sum with Python: {func1()} and NumPy {func2()} ")
tm1=it.timeit(stmt=func1, number=n)
print(f"time used Python Sum: {round(tm1,2)} sec")
tm2=it.timeit(stmt=func2, number=n)
print(f"time used  Numpy Sum: {round(tm2,2)} sec")

and Here the C program:
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
long func1(int n){
         long  r=0;
        for (int  i=1; i<= n;i++) r+= i;
         return r;
}
int main(int argc, char* argv[]){
         clock_t c0, c1;
        long v,count; int n;
       if ( argc < 2) {
              printf("Please give an argument");
             return -1;
      }
    n=atoi(argv[1]);
    c0 = clock();
     *for (int j=0;j < n;j++) v=func1(n);*
     c1 = clock();
     printf ("\tCPU  time :%.2f sec", (float)(c1 - c0)/CLOCKS_PER_SEC);
     printf("\n\tThe value : %ld\n",  v);
}
_______________________________________________
python-uk mailing list
python-uk@python.org
https://mail.python.org/mailman/listinfo/python-uk

Reply via email to