On Mon, Jun 10, 2024 at 02:01:24PM +0200, Kevin Wolf wrote: > Am 05.06.2024 um 02:58 hat Amjad Alsharafi geschrieben: > > Added several tests to verify the implementation of the vvfat driver. > > > > We needed a way to interact with it, so created a basic `fat16.py` driver > > that handled writing correct sectors for us. > > > > Added `vvfat` to the non-generic formats, as its not a normal image format. > > > > Signed-off-by: Amjad Alsharafi <amjadsharaf...@gmail.com> > > --- > > tests/qemu-iotests/check | 2 +- > > tests/qemu-iotests/fat16.py | 635 +++++++++++++++++++++++++++++ > > tests/qemu-iotests/testenv.py | 2 +- > > tests/qemu-iotests/tests/vvfat | 440 ++++++++++++++++++++ > > tests/qemu-iotests/tests/vvfat.out | 5 + > > 5 files changed, 1082 insertions(+), 2 deletions(-) > > create mode 100644 tests/qemu-iotests/fat16.py > > create mode 100755 tests/qemu-iotests/tests/vvfat > > create mode 100755 tests/qemu-iotests/tests/vvfat.out > > > > diff --git a/tests/qemu-iotests/check b/tests/qemu-iotests/check > > index 56d88ca423..545f9ec7bd 100755 > > --- a/tests/qemu-iotests/check > > +++ b/tests/qemu-iotests/check > > @@ -84,7 +84,7 @@ def make_argparser() -> argparse.ArgumentParser: > > p.set_defaults(imgfmt='raw', imgproto='file') > > > > format_list = ['raw', 'bochs', 'cloop', 'parallels', 'qcow', 'qcow2', > > - 'qed', 'vdi', 'vpc', 'vhdx', 'vmdk', 'luks', 'dmg'] > > + 'qed', 'vdi', 'vpc', 'vhdx', 'vmdk', 'luks', 'dmg', > > 'vvfat'] > > g_fmt = p.add_argument_group( > > ' image format options', > > 'The following options set the IMGFMT environment variable. ' > > diff --git a/tests/qemu-iotests/fat16.py b/tests/qemu-iotests/fat16.py > > new file mode 100644 > > index 0000000000..baf801b4d5 > > --- /dev/null > > +++ b/tests/qemu-iotests/fat16.py > > @@ -0,0 +1,635 @@ > > +# A simple FAT16 driver that is used to test the `vvfat` driver in QEMU. > > +# > > +# Copyright (C) 2024 Amjad Alsharafi <amjadsharaf...@gmail.com> > > +# > > +# This program is free software; you can redistribute it and/or modify > > +# it under the terms of the GNU General Public License as published by > > +# the Free Software Foundation; either version 2 of the License, or > > +# (at your option) any later version. > > +# > > +# This program is distributed in the hope that it will be useful, > > +# but WITHOUT ANY WARRANTY; without even the implied warranty of > > +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > +# GNU General Public License for more details. > > +# > > +# You should have received a copy of the GNU General Public License > > +# along with this program. If not, see <http://www.gnu.org/licenses/>. > > + > > +from typing import List > > +import string > > + > > +SECTOR_SIZE = 512 > > +DIRENTRY_SIZE = 32 > > +ALLOWED_FILE_CHARS = \ > > + set("!#$%&'()-@^_`{}~" + string.digits + string.ascii_uppercase) > > + > > + > > +class MBR: > > + def __init__(self, data: bytes): > > + assert len(data) == 512 > > + self.partition_table = [] > > + for i in range(4): > > + partition = data[446 + i * 16 : 446 + (i + 1) * 16] > > + self.partition_table.append( > > + { > > + "status": partition[0], > > + "start_head": partition[1], > > + "start_sector": partition[2] & 0x3F, > > + "start_cylinder": > > + ((partition[2] & 0xC0) << 2) | partition[3], > > + "type": partition[4], > > + "end_head": partition[5], > > + "end_sector": partition[6] & 0x3F, > > + "end_cylinder": > > + ((partition[6] & 0xC0) << 2) | partition[7], > > + "start_lba": int.from_bytes(partition[8:12], "little"), > > + "size": int.from_bytes(partition[12:16], "little"), > > + } > > + ) > > + > > + def __str__(self): > > + return "\n".join( > > + [f"{i}: {partition}" > > + for i, partition in enumerate(self.partition_table)] > > + ) > > + > > + > > +class FatBootSector: > > + def __init__(self, data: bytes): > > + assert len(data) == 512 > > + self.bytes_per_sector = int.from_bytes(data[11:13], "little") > > + self.sectors_per_cluster = data[13] > > + self.reserved_sectors = int.from_bytes(data[14:16], "little") > > + self.fat_count = data[16] > > + self.root_entries = int.from_bytes(data[17:19], "little") > > + self.media_descriptor = data[21] > > + self.fat_size = int.from_bytes(data[22:24], "little") > > + self.sectors_per_fat = int.from_bytes(data[22:24], "little") > > Why two different attributes self.fat_size and self.sectors_per_fat that > contain the same value? > > > + self.sectors_per_track = int.from_bytes(data[24:26], "little") > > + self.heads = int.from_bytes(data[26:28], "little") > > + self.hidden_sectors = int.from_bytes(data[28:32], "little") > > + self.total_sectors = int.from_bytes(data[32:36], "little") > > This value should only be considered if the 16 bit value at byte 19 > (which you don't store at all) was 0. > > > + self.drive_number = data[36] > > + self.volume_id = int.from_bytes(data[39:43], "little") > > + self.volume_label = data[43:54].decode("ascii").strip() > > + self.fs_type = data[54:62].decode("ascii").strip() > > + > > + def root_dir_start(self): > > + """ > > + Calculate the start sector of the root directory. > > + """ > > + return self.reserved_sectors + self.fat_count * > > self.sectors_per_fat > > + > > + def root_dir_size(self): > > + """ > > + Calculate the size of the root directory in sectors. > > + """ > > + return ( > > + self.root_entries * DIRENTRY_SIZE + self.bytes_per_sector - 1 > > + ) // self.bytes_per_sector > > + > > + def data_sector_start(self): > > + """ > > + Calculate the start sector of the data region. > > + """ > > + return self.root_dir_start() + self.root_dir_size() > > + > > + def first_sector_of_cluster(self, cluster: int): > > + """ > > + Calculate the first sector of the given cluster. > > + """ > > + return self.data_sector_start() \ > > + + (cluster - 2) * self.sectors_per_cluster > > + > > + def cluster_bytes(self): > > + """ > > + Calculate the number of bytes in a cluster. > > + """ > > + return self.bytes_per_sector * self.sectors_per_cluster > > + > > + def __str__(self): > > + return ( > > + f"Bytes per sector: {self.bytes_per_sector}\n" > > + f"Sectors per cluster: {self.sectors_per_cluster}\n" > > + f"Reserved sectors: {self.reserved_sectors}\n" > > + f"FAT count: {self.fat_count}\n" > > + f"Root entries: {self.root_entries}\n" > > + f"Total sectors: {self.total_sectors}\n" > > + f"Media descriptor: {self.media_descriptor}\n" > > + f"Sectors per FAT: {self.sectors_per_fat}\n" > > + f"Sectors per track: {self.sectors_per_track}\n" > > + f"Heads: {self.heads}\n" > > + f"Hidden sectors: {self.hidden_sectors}\n" > > + f"Drive number: {self.drive_number}\n" > > + f"Volume ID: {self.volume_id}\n" > > + f"Volume label: {self.volume_label}\n" > > + f"FS type: {self.fs_type}\n" > > + ) > > + > > + > > +class FatDirectoryEntry: > > + def __init__(self, data: bytes, sector: int, offset: int): > > + self.name = data[0:8].decode("ascii").strip() > > + self.ext = data[8:11].decode("ascii").strip() > > + self.attributes = data[11] > > + self.reserved = data[12] > > + self.create_time_tenth = data[13] > > + self.create_time = int.from_bytes(data[14:16], "little") > > + self.create_date = int.from_bytes(data[16:18], "little") > > + self.last_access_date = int.from_bytes(data[18:20], "little") > > + high_cluster = int.from_bytes(data[20:22], "little") > > + self.last_mod_time = int.from_bytes(data[22:24], "little") > > + self.last_mod_date = int.from_bytes(data[24:26], "little") > > + low_cluster = int.from_bytes(data[26:28], "little") > > + self.cluster = (high_cluster << 16) | low_cluster > > + self.size_bytes = int.from_bytes(data[28:32], "little") > > + > > + # extra (to help write back to disk) > > + self.sector = sector > > + self.offset = offset > > + > > + def as_bytes(self) -> bytes: > > + return ( > > + self.name.ljust(8, " ").encode("ascii") > > + + self.ext.ljust(3, " ").encode("ascii") > > + + self.attributes.to_bytes(1, "little") > > + + self.reserved.to_bytes(1, "little") > > + + self.create_time_tenth.to_bytes(1, "little") > > + + self.create_time.to_bytes(2, "little") > > + + self.create_date.to_bytes(2, "little") > > + + self.last_access_date.to_bytes(2, "little") > > + + (self.cluster >> 16).to_bytes(2, "little") > > + + self.last_mod_time.to_bytes(2, "little") > > + + self.last_mod_date.to_bytes(2, "little") > > + + (self.cluster & 0xFFFF).to_bytes(2, "little") > > + + self.size_bytes.to_bytes(4, "little") > > + ) > > + > > + def whole_name(self): > > + if self.ext: > > + return f"{self.name}.{self.ext}" > > + else: > > + return self.name > > + > > + def __str__(self): > > + return ( > > + f"Name: {self.name}\n" > > + f"Ext: {self.ext}\n" > > + f"Attributes: {self.attributes}\n" > > + f"Reserved: {self.reserved}\n" > > + f"Create time tenth: {self.create_time_tenth}\n" > > + f"Create time: {self.create_time}\n" > > + f"Create date: {self.create_date}\n" > > + f"Last access date: {self.last_access_date}\n" > > + f"Last mod time: {self.last_mod_time}\n" > > + f"Last mod date: {self.last_mod_date}\n" > > + f"Cluster: {self.cluster}\n" > > + f"Size: {self.size_bytes}\n" > > + ) > > + > > + def __repr__(self): > > + # convert to dict > > + return str(vars(self)) > > + > > + > > +class Fat16: > > + def __init__( > > + self, > > + start_sector: int, > > + size: int, > > + sector_reader: callable, > > + sector_writer: callable, > > + ): > > + self.start_sector = start_sector > > + self.size_in_sectors = size > > + self.sector_reader = sector_reader > > + self.sector_writer = sector_writer > > + > > + self.boot_sector = FatBootSector(self.sector_reader(start_sector)) > > + > > + fat_size_in_sectors = \ > > + self.boot_sector.fat_size * self.boot_sector.fat_count > > + self.fats = self.read_sectors( > > + self.boot_sector.reserved_sectors, fat_size_in_sectors > > + ) > > + self.fats_dirty_sectors = set() > > + > > + def read_sectors(self, start_sector: int, num_sectors: int) -> bytes: > > + return self.sector_reader(start_sector + self.start_sector, > > num_sectors) > > + > > + def write_sectors(self, start_sector: int, data: bytes): > > + return self.sector_writer(start_sector + self.start_sector, data) > > + > > + def directory_from_bytes( > > + self, data: bytes, start_sector: int > > + ) -> List[FatDirectoryEntry]: > > + """ > > + Convert `bytes` into a list of `FatDirectoryEntry` objects. > > + Will ignore long file names. > > + Will stop when it encounters a 0x00 byte. > > + """ > > + > > + entries = [] > > + for i in range(0, len(data), DIRENTRY_SIZE): > > + entry = data[i : i + DIRENTRY_SIZE] > > + > > + current_sector = start_sector + (i // SECTOR_SIZE) > > + current_offset = i % SECTOR_SIZE > > + > > + if entry[0] == 0: > > + break > > + elif entry[0] == 0xE5: > > + # Deleted file > > + continue > > + > > + if entry[11] & 0xF == 0xF: > > + # Long file name > > + continue > > + > > + entries.append( > > + FatDirectoryEntry(entry, current_sector, current_offset)) > > + return entries > > + > > + def read_root_directory(self) -> List[FatDirectoryEntry]: > > + root_dir = self.read_sectors( > > + self.boot_sector.root_dir_start(), > > self.boot_sector.root_dir_size() > > + ) > > + return self.directory_from_bytes(root_dir, > > + self.boot_sector.root_dir_start()) > > + > > + def read_fat_entry(self, cluster: int) -> int: > > + """ > > + Read the FAT entry for the given cluster. > > + """ > > + fat_offset = cluster * 2 # FAT16 > > + return int.from_bytes(self.fats[fat_offset : fat_offset + 2], > > "little") > > + > > + def write_fat_entry(self, cluster: int, value: int): > > + """ > > + Write the FAT entry for the given cluster. > > + """ > > + fat_offset = cluster * 2 > > + self.fats = ( > > + self.fats[:fat_offset] > > + + value.to_bytes(2, "little") > > + + self.fats[fat_offset + 2 :] > > + ) > > + self.fats_dirty_sectors.add(fat_offset // SECTOR_SIZE) > > + > > + def flush_fats(self): > > + """ > > + Write the FATs back to the disk. > > + """ > > + for sector in self.fats_dirty_sectors: > > + data = self.fats[sector * SECTOR_SIZE : (sector + 1) * > > SECTOR_SIZE] > > + sector = self.boot_sector.reserved_sectors + sector > > + self.write_sectors(sector, data) > > + self.fats_dirty_sectors = set() > > + > > + def next_cluster(self, cluster: int) -> int | None: > > + """ > > + Get the next cluster in the chain. > > + If its `None`, then its the last cluster. > > + The function will crash if the next cluster > > + is `FREE` (unexpected) or invalid entry. > > + """ > > + fat_entry = self.read_fat_entry(cluster) > > + if fat_entry == 0: > > + raise Exception("Unexpected: FREE cluster") > > + elif fat_entry == 1: > > + raise Exception("Unexpected: RESERVED cluster") > > + elif fat_entry >= 0xFFF8: > > + return None > > + elif fat_entry >= 0xFFF7: > > + raise Exception("Invalid FAT entry") > > + else: > > + return fat_entry > > + > > + def next_free_cluster(self) -> int: > > + """ > > + Find the next free cluster. > > + """ > > + # simple linear search > > + for i in range(2, 0xFFFF): > > + if self.read_fat_entry(i) == 0: > > + return i > > + raise Exception("No free clusters") > > + > > + def read_cluster(self, cluster: int) -> bytes: > > + """ > > + Read the cluster at the given cluster. > > + """ > > + return self.read_sectors( > > + self.boot_sector.first_sector_of_cluster(cluster), > > + self.boot_sector.sectors_per_cluster, > > + ) > > + > > + def write_cluster(self, cluster: int, data: bytes): > > + """ > > + Write the cluster at the given cluster. > > + """ > > + assert len(data) == self.boot_sector.cluster_bytes() > > + return self.write_sectors( > > + self.boot_sector.first_sector_of_cluster(cluster), > > + data, > > + ) > > + > > + def read_directory(self, cluster: int) -> List[FatDirectoryEntry]: > > + """ > > + Read the directory at the given cluster. > > + """ > > + entries = [] > > + while cluster is not None: > > + data = self.read_cluster(cluster) > > + entries.extend( > > + self.directory_from_bytes( > > + data, self.boot_sector.first_sector_of_cluster(cluster) > > + ) > > + ) > > + cluster = self.next_cluster(cluster) > > + return entries > > + > > + def add_direntry(self, > > + cluster: int | None, > > + name: str, ext: str, > > + attributes: int): > > + """ > > + Add a new directory entry to the given cluster. > > + If the cluster is `None`, then it will be added to the root > > directory. > > + """ > > + > > + def find_free_entry(data: bytes): > > + for i in range(0, len(data), DIRENTRY_SIZE): > > + entry = data[i : i + DIRENTRY_SIZE] > > + if entry[0] == 0 or entry[0] == 0xE5: > > + return i > > + return None > > + > > + assert len(name) <= 8, "Name must be 8 characters or less" > > + assert len(ext) <= 3, "Ext must be 3 characters or less" > > + assert attributes % 0x15 != 0x15, "Invalid attributes" > > + > > + # initial dummy data > > + new_entry = FatDirectoryEntry(b"\0" * 32, 0, 0) > > + new_entry.name = name.ljust(8, " ") > > + new_entry.ext = ext.ljust(3, " ") > > + new_entry.attributes = attributes > > + new_entry.reserved = 0 > > + new_entry.create_time_tenth = 0 > > + new_entry.create_time = 0 > > + new_entry.create_date = 0 > > + new_entry.last_access_date = 0 > > + new_entry.last_mod_time = 0 > > + new_entry.last_mod_date = 0 > > + new_entry.cluster = self.next_free_cluster() > > + new_entry.size_bytes = 0 > > + > > + # mark as EOF > > + self.write_fat_entry(new_entry.cluster, 0xFFFF) > > + > > + if cluster is None: > > + for i in range(self.boot_sector.root_dir_size()): > > + sector_data = self.read_sectors( > > + self.boot_sector.root_dir_start() + i, 1 > > + ) > > + offset = find_free_entry(sector_data) > > + if offset is not None: > > + new_entry.sector = self.boot_sector.root_dir_start() + > > i > > + new_entry.offset = offset > > + self.update_direntry(new_entry) > > + return new_entry > > + else: > > + while cluster is not None: > > + data = self.read_cluster(cluster) > > + offset = find_free_entry(data) > > + if offset is not None: > > + new_entry.sector = > > self.boot_sector.first_sector_of_cluster( > > + cluster > > + ) + (offset // SECTOR_SIZE) > > + new_entry.offset = offset % SECTOR_SIZE > > + self.update_direntry(new_entry) > > + return new_entry > > + cluster = self.next_cluster(cluster) > > + > > + raise Exception("No free directory entries") > > + > > + def update_direntry(self, entry: FatDirectoryEntry): > > + """ > > + Write the directory entry back to the disk. > > + """ > > + sector = self.read_sectors(entry.sector, 1) > > + sector = ( > > + sector[: entry.offset] > > + + entry.as_bytes() > > + + sector[entry.offset + DIRENTRY_SIZE :] > > + ) > > + self.write_sectors(entry.sector, sector) > > + > > + def find_direntry(self, path: str) -> FatDirectoryEntry | None: > > + """ > > + Find the directory entry for the given path. > > + """ > > + assert path[0] == "/", "Path must start with /" > > + > > + path = path[1:] # remove the leading / > > + parts = path.split("/") > > + directory = self.read_root_directory() > > + > > + current_entry = None > > + > > + for i, part in enumerate(parts): > > + is_last = i == len(parts) - 1 > > + > > + for entry in directory: > > + if entry.whole_name() == part: > > + current_entry = entry > > + break > > + if current_entry is None: > > + return None > > + > > + if is_last: > > + return current_entry > > + else: > > + if current_entry.attributes & 0x10 == 0: > > + raise Exception( > > + f"{current_entry.whole_name()} is not a directory") > > + else: > > + directory = self.read_directory(current_entry.cluster) > > + > > + def read_file(self, entry: FatDirectoryEntry) -> bytes: > > + """ > > + Read the content of the file at the given path. > > + """ > > + if entry is None: > > + return None > > + if entry.attributes & 0x10 != 0: > > + raise Exception(f"{entry.whole_name()} is a directory") > > + > > + data = b"" > > + cluster = entry.cluster > > + while cluster is not None and len(data) <= entry.size_bytes: > > + data += self.read_cluster(cluster) > > + cluster = self.next_cluster(cluster) > > + return data[: entry.size_bytes] > > + > > + def truncate_file(self, entry: FatDirectoryEntry, new_size: int): > > + """ > > + Truncate the file at the given path to the new size. > > + """ > > + if entry is None: > > + return Exception("entry is None") > > + if entry.attributes & 0x10 != 0: > > + raise Exception(f"{entry.whole_name()} is a directory") > > + > > + def clusters_from_size(size: int): > > + return ( > > + size + self.boot_sector.cluster_bytes() - 1 > > + ) // self.boot_sector.cluster_bytes() > > + > > + # First, allocate new FATs if we need to > > + required_clusters = clusters_from_size(new_size) > > + current_clusters = clusters_from_size(entry.size_bytes) > > + > > + affected_clusters = set() > > + > > + # Keep at least one cluster, easier to manage this way > > + if required_clusters == 0: > > + required_clusters = 1 > > + if current_clusters == 0: > > + current_clusters = 1 > > + > > + if required_clusters > current_clusters: > > + # Allocate new clusters > > + cluster = entry.cluster > > + to_add = required_clusters > > + for _ in range(current_clusters - 1): > > + to_add -= 1 > > + cluster = self.next_cluster(cluster) > > + assert required_clusters > 0, "No new clusters to allocate" > > + assert cluster is not None, "Cluster is None" > > + assert self.next_cluster(cluster) is None, \ > > + "Cluster is not the last cluster" > > + > > + # Allocate new clusters > > + for _ in range(to_add - 1): > > + new_cluster = self.next_free_cluster() > > + self.write_fat_entry(cluster, new_cluster) > > + self.write_fat_entry(new_cluster, 0xFFFF) > > + cluster = new_cluster > > + > > + elif required_clusters < current_clusters: > > + # Truncate the file > > + cluster = entry.cluster > > + for _ in range(required_clusters - 1): > > + cluster = self.next_cluster(cluster) > > + assert cluster is not None, "Cluster is None" > > + > > + next_cluster = self.next_cluster(cluster) > > + # mark last as EOF > > + self.write_fat_entry(cluster, 0xFFFF) > > + # free the rest > > + while next_cluster is not None: > > + cluster = next_cluster > > + next_cluster = self.next_cluster(next_cluster) > > + self.write_fat_entry(cluster, 0) > > + > > + self.flush_fats() > > + > > + # verify number of clusters > > + cluster = entry.cluster > > + count = 0 > > + while cluster is not None: > > + count += 1 > > + affected_clusters.add(cluster) > > + cluster = self.next_cluster(cluster) > > + assert ( > > + count == required_clusters > > + ), f"Expected {required_clusters} clusters, got {count}" > > + > > + # update the size > > + entry.size_bytes = new_size > > + self.update_direntry(entry) > > + > > + # trigger every affected cluster > > + for cluster in affected_clusters: > > + first_sector = > > self.boot_sector.first_sector_of_cluster(cluster) > > + first_sector_data = self.read_sectors(first_sector, 1) > > + self.write_sectors(first_sector, first_sector_data) > > + > > + def write_file(self, entry: FatDirectoryEntry, data: bytes): > > + """ > > + Write the content of the file at the given path. > > + """ > > + if entry is None: > > + return Exception("entry is None") > > + if entry.attributes & 0x10 != 0: > > + raise Exception(f"{entry.whole_name()} is a directory") > > + > > + data_len = len(data) > > + > > + self.truncate_file(entry, data_len) > > + > > + cluster = entry.cluster > > + while cluster is not None: > > + data_to_write = data[: self.boot_sector.cluster_bytes()] > > + last_data = False > > + if len(data_to_write) < self.boot_sector.cluster_bytes(): > > + last_data = True > > + old_data = self.read_cluster(cluster) > > + data_to_write += old_data[len(data_to_write) :] > > + > > + self.write_cluster(cluster, data_to_write) > > + data = data[self.boot_sector.cluster_bytes() :] > > + if len(data) == 0: > > + break > > + cluster = self.next_cluster(cluster) > > + > > + assert len(data) == 0, \ > > + "Data was not written completely, clusters missing" > > + > > + def create_file(self, path: str): > > + """ > > + Create a new file at the given path. > > + """ > > + assert path[0] == "/", "Path must start with /" > > + > > + path = path[1:] # remove the leading / > > + > > + parts = path.split("/") > > + > > + directory_cluster = None > > + directory = self.read_root_directory() > > + > > + parts, filename = parts[:-1], parts[-1] > > + > > + for i, part in enumerate(parts): > > + current_entry = None > > + for entry in directory: > > + if entry.whole_name() == part: > > + current_entry = entry > > + break > > + if current_entry is None: > > + return None > > + > > + if current_entry.attributes & 0x10 == 0: > > + raise Exception( > > + f"{current_entry.whole_name()} is not a directory") > > + else: > > + directory = self.read_directory(current_entry.cluster) > > + directory_cluster = current_entry.cluster > > + > > + # add new entry to the directory > > + > > + filename, ext = filename.split(".") > > + > > + if len(ext) > 3: > > + raise Exception("Ext must be 3 characters or less") > > + if len(filename) > 8: > > + raise Exception("Name must be 8 characters or less") > > + > > + for c in filename + ext: > > + > > + if c not in ALLOWED_FILE_CHARS: > > + raise Exception("Invalid character in filename") > > + > > + return self.add_direntry(directory_cluster, filename, ext, 0) > > diff --git a/tests/qemu-iotests/testenv.py b/tests/qemu-iotests/testenv.py > > index 588f30a4f1..4053d29de4 100644 > > --- a/tests/qemu-iotests/testenv.py > > +++ b/tests/qemu-iotests/testenv.py > > @@ -250,7 +250,7 @@ def __init__(self, source_dir: str, build_dir: str, > > self.qemu_img_options = os.getenv('QEMU_IMG_OPTIONS') > > self.qemu_nbd_options = os.getenv('QEMU_NBD_OPTIONS') > > > > - is_generic = self.imgfmt not in ['bochs', 'cloop', 'dmg'] > > + is_generic = self.imgfmt not in ['bochs', 'cloop', 'dmg', 'vvfat'] > > self.imgfmt_generic = 'true' if is_generic else 'false' > > > > self.qemu_io_options = f'--cache {self.cachemode} --aio > > {self.aiomode}' > > diff --git a/tests/qemu-iotests/tests/vvfat b/tests/qemu-iotests/tests/vvfat > > new file mode 100755 > > index 0000000000..113d7d3270 > > --- /dev/null > > +++ b/tests/qemu-iotests/tests/vvfat > > @@ -0,0 +1,440 @@ > > +#!/usr/bin/env python3 > > +# group: rw vvfat > > +# > > +# Test vvfat driver implementation > > +# Here, we use a simple FAT16 implementation and check the behavior of the > > vvfat driver. > > +# > > +# Copyright (C) 2024 Amjad Alsharafi <amjadsharaf...@gmail.com> > > +# > > +# This program is free software; you can redistribute it and/or modify > > +# it under the terms of the GNU General Public License as published by > > +# the Free Software Foundation; either version 2 of the License, or > > +# (at your option) any later version. > > +# > > +# This program is distributed in the hope that it will be useful, > > +# but WITHOUT ANY WARRANTY; without even the implied warranty of > > +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the > > +# GNU General Public License for more details. > > +# > > +# You should have received a copy of the GNU General Public License > > +# along with this program. If not, see <http://www.gnu.org/licenses/>. > > + > > +import os, shutil > > +import iotests > > +from iotests import imgfmt, QMPTestCase > > +from fat16 import MBR, Fat16, DIRENTRY_SIZE > > + > > +filesystem = os.path.join(iotests.test_dir, "filesystem") > > + > > +nbd_sock = iotests.file_path("nbd.sock", base_dir=iotests.sock_dir) > > +nbd_uri = "nbd+unix:///disk?socket=" + nbd_sock > > + > > +SECTOR_SIZE = 512 > > + > > + > > +class TestVVFatDriver(QMPTestCase): > > + def setUp(self) -> None: > > + if os.path.exists(filesystem): > > + if os.path.isdir(filesystem): > > + shutil.rmtree(filesystem) > > + else: > > + print(f"Error: {filesystem} exists and is not a directory") > > + exit(1) > > + os.mkdir(filesystem) > > + > > + # Add some text files to the filesystem > > + for i in range(10): > > + with open(os.path.join(filesystem, f"file{i}.txt"), "w") as f: > > + f.write(f"Hello, world! {i}\n") > > + > > + # Add 2 large files, above the cluster size (8KB) > > + with open(os.path.join(filesystem, "large1.txt"), "wb") as f: > > + # write 'A' * 1KB, 'B' * 1KB, 'C' * 1KB, ... > > + for i in range(8 * 2): # two clusters > > + f.write(bytes([0x41 + i] * 1024)) > > + > > + with open(os.path.join(filesystem, "large2.txt"), "wb") as f: > > + # write 'A' * 1KB, 'B' * 1KB, 'C' * 1KB, ... > > + for i in range(8 * 3): # 3 clusters > > + f.write(bytes([0x41 + i] * 1024)) > > + > > + self.vm = iotests.VM() > > + > > + self.vm.add_blockdev( > > + self.vm.qmp_to_opts( > > + { > > + "driver": imgfmt, > > + "node-name": "disk", > > + "rw": "true", > > + "fat-type": "16", > > + "dir": filesystem, > > + } > > + ) > > + ) > > + > > + self.vm.launch() > > + > > + self.vm.qmp_log("block-dirty-bitmap-add", **{"node": "disk", > > "name": "bitmap0"}) > > + > > + # attach nbd server > > + self.vm.qmp_log( > > + "nbd-server-start", > > + **{"addr": {"type": "unix", "data": {"path": nbd_sock}}}, > > + filters=[], > > + ) > > + > > + self.vm.qmp_log( > > + "nbd-server-add", > > + **{"device": "disk", "writable": True, "bitmap": "bitmap0"}, > > + ) > > + > > + self.qio = iotests.QemuIoInteractive("-f", "raw", nbd_uri) > > + > > + def tearDown(self) -> None: > > + self.qio.close() > > + self.vm.shutdown() > > + # print(self.vm.get_log()) > > + shutil.rmtree(filesystem) > > + > > + def read_sectors(self, sector: int, num: int = 1) -> bytes: > > + """ > > + Read `num` sectors starting from `sector` from the `disk`. > > + This uses `QemuIoInteractive` to read the sectors into `stdout` > > and then parse the output. > > + """ > > + self.assertGreater(num, 0) > > + # The output contains the content of the sector in hex dump format > > + # We need to extract the content from it > > + output = self.qio.cmd(f"read -v {sector * SECTOR_SIZE} {num * > > SECTOR_SIZE}") > > + # Each row is 16 bytes long, and we are writing `num` sectors > > + rows = num * SECTOR_SIZE // 16 > > + output_rows = output.split("\n")[:rows] > > + > > + hex_content = "".join( > > + [(row.split(": ")[1]).split(" ")[0] for row in output_rows] > > + ) > > + bytes_content = bytes.fromhex(hex_content) > > + > > + self.assertEqual(len(bytes_content), num * SECTOR_SIZE) > > + > > + return bytes_content > > + > > + def write_sectors(self, sector: int, data: bytes): > > + """ > > + Write `data` to the `disk` starting from `sector`. > > + This uses `QemuIoInteractive` to write the data into the disk. > > + """ > > + > > + self.assertGreater(len(data), 0) > > + self.assertEqual(len(data) % SECTOR_SIZE, 0) > > + > > + temp_file = os.path.join(iotests.test_dir, "temp.bin") > > + with open(temp_file, "wb") as f: > > + f.write(data) > > + > > + self.qio.cmd(f"write -s {temp_file} {sector * SECTOR_SIZE} > > {len(data)}") > > + > > + os.remove(temp_file) > > + > > + def init_fat16(self): > > + mbr = MBR(self.read_sectors(0)) > > + return Fat16( > > + mbr.partition_table[0]["start_lba"], > > + mbr.partition_table[0]["size"], > > + self.read_sectors, > > + self.write_sectors, > > + ) > > + > > + # Tests > > + > > + def test_fat_filesystem(self): > > + """ > > + Test that vvfat produce a valid FAT16 and MBR sectors > > + """ > > + mbr = MBR(self.read_sectors(0)) > > + > > + self.assertEqual(mbr.partition_table[0]["status"], 0x80) > > + self.assertEqual(mbr.partition_table[0]["type"], 6) > > + > > + fat16 = Fat16( > > + mbr.partition_table[0]["start_lba"], > > + mbr.partition_table[0]["size"], > > + self.read_sectors, > > + self.write_sectors, > > + ) > > + self.assertEqual(fat16.boot_sector.bytes_per_sector, 512) > > + self.assertEqual(fat16.boot_sector.volume_label, "QEMU VVFAT") > > + > > + def test_read_root_directory(self): > > + """ > > + Test the content of the root directory > > + """ > > + fat16 = self.init_fat16() > > + > > + root_dir = fat16.read_root_directory() > > + > > + self.assertEqual(len(root_dir), 13) # 12 + 1 special file > > + > > + files = { > > + "QEMU VVF.AT": 0, # special empty file > > + "FILE0.TXT": 16, > > + "FILE1.TXT": 16, > > + "FILE2.TXT": 16, > > + "FILE3.TXT": 16, > > + "FILE4.TXT": 16, > > + "FILE5.TXT": 16, > > + "FILE6.TXT": 16, > > + "FILE7.TXT": 16, > > + "FILE8.TXT": 16, > > + "FILE9.TXT": 16, > > + "LARGE1.TXT": 0x2000 * 2, > > + "LARGE2.TXT": 0x2000 * 3, > > + } > > + > > + for entry in root_dir: > > + self.assertIn(entry.whole_name(), files) > > + self.assertEqual(entry.size_bytes, files[entry.whole_name()]) > > + > > + def test_direntry_as_bytes(self): > > + """ > > + Test if we can convert Direntry back to bytes, so that we can > > write it back to the disk safely. > > + """ > > + fat16 = self.init_fat16() > > + > > + root_dir = fat16.read_root_directory() > > + first_entry_bytes = > > fat16.read_sectors(fat16.boot_sector.root_dir_start(), 1) > > + # The first entry won't be deleted, so we can compare it with the > > first entry in the root directory > > + self.assertEqual(root_dir[0].as_bytes(), > > first_entry_bytes[:DIRENTRY_SIZE]) > > + > > + def test_read_files(self): > > + """ > > + Test reading the content of the files > > + """ > > + fat16 = self.init_fat16() > > + > > + for i in range(10): > > + file = fat16.find_direntry(f"/FILE{i}.TXT") > > + self.assertIsNotNone(file) > > + self.assertEqual( > > + fat16.read_file(file), f"Hello, world! > > {i}\n".encode("ascii") > > + ) > > + > > + # test large files > > + large1 = fat16.find_direntry("/LARGE1.TXT") > > + with open(os.path.join(filesystem, "large1.txt"), "rb") as f: > > + self.assertEqual(fat16.read_file(large1), f.read()) > > + > > + large2 = fat16.find_direntry("/LARGE2.TXT") > > + self.assertIsNotNone(large2) > > + with open(os.path.join(filesystem, "large2.txt"), "rb") as f: > > + self.assertEqual(fat16.read_file(large2), f.read()) > > + > > + def test_write_file_same_content_direct(self): > > + """ > > + Similar to `test_write_file_in_same_content`, but we write the > > file directly clusters > > + and thus we don't go through the modification of direntry. > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/FILE0.TXT") > > + self.assertIsNotNone(file) > > + > > + data = fat16.read_cluster(file.cluster) > > + fat16.write_cluster(file.cluster, data) > > + > > + with open(os.path.join(filesystem, "file0.txt"), "rb") as f: > > + self.assertEqual(fat16.read_file(file), f.read()) > > + > > + def test_write_file_in_same_content(self): > > + """ > > + Test writing the same content to the file back to it > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/FILE0.TXT") > > + self.assertIsNotNone(file) > > + > > + self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n") > > + > > + fat16.write_file(file, b"Hello, world! 0\n") > > + > > + self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n") > > + > > + with open(os.path.join(filesystem, "file0.txt"), "rb") as f: > > + self.assertEqual(f.read(), b"Hello, world! 0\n") > > + > > + def test_modify_content_same_clusters(self): > > + """ > > + Test modifying the content of the file without changing the number > > of clusters > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/FILE0.TXT") > > + self.assertIsNotNone(file) > > + > > + new_content = b"Hello, world! Modified\n" > > + self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n") > > + > > + fat16.write_file(file, new_content) > > + > > + self.assertEqual(fat16.read_file(file), new_content) > > + > > + with open(os.path.join(filesystem, "file0.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_truncate_file_same_clusters_less(self): > > + """ > > + Test truncating the file without changing number of clusters > > + Test decreasing the file size > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/FILE0.TXT") > > + self.assertIsNotNone(file) > > + > > + self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n") > > + > > + fat16.truncate_file(file, 5) > > + > > + new_content = fat16.read_file(file) > > + > > + self.assertEqual(new_content, b"Hello") > > + > > + with open(os.path.join(filesystem, "file0.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_truncate_file_same_clusters_more(self): > > + """ > > + Test truncating the file without changing number of clusters > > + Test increase the file size > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/FILE0.TXT") > > + self.assertIsNotNone(file) > > + > > + self.assertEqual(fat16.read_file(file), b"Hello, world! 0\n") > > + > > + fat16.truncate_file(file, 20) > > + > > + new_content = fat16.read_file(file) > > + > > + # random pattern will be appended to the file, and its not always > > the same > > + self.assertEqual(new_content[:16], b"Hello, world! 0\n") > > + self.assertEqual(len(new_content), 20) > > + > > + with open(os.path.join(filesystem, "file0.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_write_large_file(self): > > + """ > > + Test writing a large file > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/LARGE1.TXT") > > + self.assertIsNotNone(file) > > + > > + # The content of LARGE1 is A * 1KB, B * 1KB, C * 1KB, ..., P * 1KB > > + # Lets change it to be Z * 1KB, Y * 1KB, X * 1KB, ..., K * 1KB > > + # without changing the number of clusters or filesize > > + new_content = b"".join([bytes([0x5A - i] * 1024) for i in > > range(16)]) > > + > > + fat16.write_file(file, new_content) > > + > > + with open(os.path.join(filesystem, "large1.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_truncate_file_change_clusters_less(self): > > + """ > > + Test truncating a file by reducing the number of clusters > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/LARGE1.TXT") > > + self.assertIsNotNone(file) > > + > > + fat16.truncate_file(file, 1) > > + > > + self.assertEqual(fat16.read_file(file), b"A") > > + > > + with open(os.path.join(filesystem, "large1.txt"), "rb") as f: > > + self.assertEqual(f.read(), b"A") > > + > > + def test_write_file_change_clusters_less(self): > > + """ > > + Test truncating a file by reducing the number of clusters > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/LARGE2.TXT") > > + self.assertIsNotNone(file) > > + > > + new_content = b"Hello, world! This was a large file\n" > > + new_content = b"X" * 8 * 1024 + b"Y" * 8 * 1024 > > This sets and then immediately overwrites new_content. What was intended > here? > > > + > > + fat16.write_file(file, new_content) > > + > > + self.assertEqual(fat16.read_file(file), new_content) > > + > > + with open(os.path.join(filesystem, "large2.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_write_file_change_clusters_more(self): > > + """ > > + Test truncating a file by increasing the number of clusters > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/LARGE2.TXT") > > + self.assertIsNotNone(file) > > + > > + new_content = b"X" * 8 * 1024 + b"Y" * 8 * 1024 + b"Z" * 8 * 1024 > > + > > + fat16.write_file(file, new_content) > > + > > + with open(os.path.join(filesystem, "large2.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_write_file_change_clusters_more_non_last_file(self): > > + """ > > + Test truncating a file by increasing the number of clusters > > + This is a special variant of the above test, where we write to > > + a file so that when allocating new clusters, it won't have > > contiguous clusters > > + """ > > + fat16 = self.init_fat16() > > + > > + file = fat16.find_direntry("/LARGE1.TXT") > > + self.assertIsNotNone(file) > > + > > + new_content = b"X" * 8 * 1024 + b"Y" * 8 * 1024 + b"Z" * 8 * 1024 > > + > > + fat16.write_file(file, new_content) > > + > > + with open(os.path.join(filesystem, "large1.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + def test_create_file(self): > > + """ > > + Test creating a new file > > + """ > > + fat16 = self.init_fat16() > > + > > + new_file = fat16.create_file("/NEWFILE.TXT") > > + > > + self.assertIsNotNone(new_file) > > + self.assertEqual(new_file.size_bytes, 0) > > + > > + new_content = b"Hello, world! New file\n" > > + fat16.write_file(new_file, new_content) > > + > > + self.assertEqual(fat16.read_file(new_file), new_content) > > + > > + with open(os.path.join(filesystem, "newfile.txt"), "rb") as f: > > + self.assertEqual(f.read(), new_content) > > + > > + # TODO: support deleting files > > + > > + > > +if __name__ == "__main__": > > + # This is a specific test for vvfat driver > > + iotests.main(supported_fmts=["vvfat"], supported_protocols=["file"]) > > diff --git a/tests/qemu-iotests/tests/vvfat.out > > b/tests/qemu-iotests/tests/vvfat.out > > new file mode 100755 > > index 0000000000..96961ed0b5 > > --- /dev/null > > +++ b/tests/qemu-iotests/tests/vvfat.out > > @@ -0,0 +1,5 @@ > > +............... > > +---------------------------------------------------------------------- > > +Ran 15 tests > > + > > +OK > > With the updated test, I can catch the problems that are fixed by > patches 1 and 2, but it still doesn't need patch 3 to pass. > > Kevin >
Thanks for reviewing, those are all mistakes, and I fixed them (included a small patch to fix these issues at the end...). Regarding the failing test, I forgot to also read the files from the fat driver, and instead I was just reading from the host filesystem. I'm not sure exactly, why reading from the filesystem works, but reading from the driver (i.e. guest) gives the weird buggy result. I have updated the test in the patch below to reflect this. I would love if you can test the patch below and let me know if the issues are fixed, after that I can send the new series. Thanks, Amjad --- PATCH --- diff --git a/tests/qemu-iotests/fat16.py b/tests/qemu-iotests/fat16.py index baf801b4d5..411a277906 100644 --- a/tests/qemu-iotests/fat16.py +++ b/tests/qemu-iotests/fat16.py @@ -62,13 +62,16 @@ def __init__(self, data: bytes): self.reserved_sectors = int.from_bytes(data[14:16], "little") self.fat_count = data[16] self.root_entries = int.from_bytes(data[17:19], "little") + total_sectors_16 = int.from_bytes(data[19:21], "little") self.media_descriptor = data[21] - self.fat_size = int.from_bytes(data[22:24], "little") self.sectors_per_fat = int.from_bytes(data[22:24], "little") self.sectors_per_track = int.from_bytes(data[24:26], "little") self.heads = int.from_bytes(data[26:28], "little") self.hidden_sectors = int.from_bytes(data[28:32], "little") - self.total_sectors = int.from_bytes(data[32:36], "little") + total_sectors_32 = int.from_bytes(data[32:36], "little") + assert total_sectors_16 == 0 or total_sectors_32 == 0, \ + "Both total sectors (16 and 32) fields are non-zero" + self.total_sectors = total_sectors_16 or total_sectors_32 self.drive_number = data[36] self.volume_id = int.from_bytes(data[39:43], "little") self.volume_label = data[43:54].decode("ascii").strip() @@ -208,7 +211,7 @@ def __init__( self.boot_sector = FatBootSector(self.sector_reader(start_sector)) fat_size_in_sectors = \ - self.boot_sector.fat_size * self.boot_sector.fat_count + self.boot_sector.sectors_per_fat * self.boot_sector.fat_count self.fats = self.read_sectors( self.boot_sector.reserved_sectors, fat_size_in_sectors ) diff --git a/tests/qemu-iotests/tests/vvfat b/tests/qemu-iotests/tests/vvfat index 113d7d3270..8d04f292e3 100755 --- a/tests/qemu-iotests/tests/vvfat +++ b/tests/qemu-iotests/tests/vvfat @@ -369,7 +369,6 @@ class TestVVFatDriver(QMPTestCase): file = fat16.find_direntry("/LARGE2.TXT") self.assertIsNotNone(file) - new_content = b"Hello, world! This was a large file\n" new_content = b"X" * 8 * 1024 + b"Y" * 8 * 1024 fat16.write_file(file, new_content) @@ -388,10 +387,13 @@ class TestVVFatDriver(QMPTestCase): file = fat16.find_direntry("/LARGE2.TXT") self.assertIsNotNone(file) - new_content = b"X" * 8 * 1024 + b"Y" * 8 * 1024 + b"Z" * 8 * 1024 + # from 3 clusters to 4 clusters + new_content = b"W" * 8 * 1024 + b"X" * 8 * 1024 + b"Y" * 8 * 1024 + b"Z" * 8 * 1024 fat16.write_file(file, new_content) + self.assertEqual(fat16.read_file(file), new_content) + with open(os.path.join(filesystem, "large2.txt"), "rb") as f: self.assertEqual(f.read(), new_content) @@ -406,10 +408,13 @@ class TestVVFatDriver(QMPTestCase): file = fat16.find_direntry("/LARGE1.TXT") self.assertIsNotNone(file) + # from 2 clusters to 3 clusters new_content = b"X" * 8 * 1024 + b"Y" * 8 * 1024 + b"Z" * 8 * 1024 fat16.write_file(file, new_content) + self.assertEqual(fat16.read_file(file), new_content) + with open(os.path.join(filesystem, "large1.txt"), "rb") as f: self.assertEqual(f.read(), new_content)