QEMU's AddressSpace matches vm_memory::GuestAddressSpace very well, so it's straightforward to implement vm_memory::GuestAddressSpace trait for AddressSpace structure.
And since QEMU's memory is almost entirely processed through AddressSpace, provide the high-level memory write/read/store/load interfaces for Rust side use. Additionally, provide the safe binding for address_space_memory. Signed-off-by: Zhao Liu <zhao1....@intel.com> --- rust/qemu-api/src/memory.rs | 149 +++++++++++++++++++++++++++++++++--- 1 file changed, 140 insertions(+), 9 deletions(-) diff --git a/rust/qemu-api/src/memory.rs b/rust/qemu-api/src/memory.rs index 23347f35e5da..42bba23cf3f8 100644 --- a/rust/qemu-api/src/memory.rs +++ b/rust/qemu-api/src/memory.rs @@ -3,7 +3,7 @@ // SPDX-License-Identifier: GPL-2.0-or-later //! Bindings for `MemoryRegion`, `MemoryRegionOps`, `MemTxAttrs` -//! `MemoryRegionSection` and `FlatView`. +//! `MemoryRegionSection`, `FlatView` and `AddressSpace`. use std::{ ffi::{c_uint, c_void, CStr, CString}, @@ -11,7 +11,7 @@ marker::PhantomData, mem::size_of, ops::Deref, - ptr::NonNull, + ptr::{addr_of, NonNull}, sync::atomic::Ordering, }; @@ -19,21 +19,25 @@ pub use bindings::{hwaddr, MemTxAttrs}; pub use vm_memory::GuestAddress; use vm_memory::{ - bitmap::BS, Address, AtomicAccess, Bytes, GuestMemory, GuestMemoryError, GuestMemoryRegion, - GuestMemoryResult, GuestUsize, MemoryRegionAddress, ReadVolatile, VolatileSlice, WriteVolatile, + bitmap::BS, Address, AtomicAccess, Bytes, GuestAddressSpace, GuestMemory, GuestMemoryError, + GuestMemoryRegion, GuestMemoryResult, GuestUsize, MemoryRegionAddress, ReadVolatile, + VolatileSlice, WriteVolatile, }; use crate::{ bindings::{ - self, address_space_lookup_section, device_endian, flatview_ref, - flatview_translate_section, flatview_unref, memory_region_init_io, section_access_allowed, - section_covers_region_addr, section_fuzz_dma_read, section_get_host_addr, - section_rust_load, section_rust_read_continue_step, section_rust_store, - section_rust_write_continue_step, MEMTX_OK, + self, address_space_lookup_section, address_space_memory, address_space_to_flatview, + device_endian, flatview_ref, flatview_translate_section, flatview_unref, + memory_region_init_io, section_access_allowed, section_covers_region_addr, + section_fuzz_dma_read, section_get_host_addr, section_rust_load, + section_rust_read_continue_step, section_rust_store, section_rust_write_continue_step, + MEMTX_OK, }, callbacks::FnCall, cell::Opaque, + error::{Error, Result}, prelude::*, + rcu::{rcu_read_lock, rcu_read_unlock}, uninit::MaybeUninitField, zeroable::Zeroable, }; @@ -1016,3 +1020,130 @@ fn clone(&self) -> Self { ) } } + +/// A safe wrapper around [`bindings::AddressSpace`]. +/// +/// [`AddressSpace`] is the address space abstraction in QEMU, which +/// provides memory access for the Guest memory it managed. +#[repr(transparent)] +#[derive(qemu_api_macros::Wrapper)] +pub struct AddressSpace(Opaque<bindings::AddressSpace>); + +unsafe impl Send for AddressSpace {} +unsafe impl Sync for AddressSpace {} + +impl GuestAddressSpace for AddressSpace { + type M = FlatView; + type T = FlatViewRefGuard; + + /// Get the memory of the [`AddressSpace`]. + /// + /// This function retrieves the [`FlatView`] for the current + /// [`AddressSpace`]. And it should be called from an RCU + /// critical section. The returned [`FlatView`] is used for + /// short-term memory access. + /// + /// Note, this function method may **panic** if [`FlatView`] is + /// being distroying. Fo this case, we should consider to providing + /// the more stable binding with [`bindings::address_space_get_flatview`]. + fn memory(&self) -> Self::T { + let flatp = unsafe { address_space_to_flatview(self.0.as_mut_ptr()) }; + FlatViewRefGuard::new(unsafe { Self::M::from_raw(flatp) }).expect( + "Failed to clone FlatViewRefGuard: the FlatView may have been destroyed concurrently.", + ) + } +} + +/// The helper to convert [`vm_memory::GuestMemoryError`] to +/// [`crate::error::Error`]. +#[track_caller] +fn guest_mem_err_to_qemu_err(err: GuestMemoryError) -> Error { + match err { + GuestMemoryError::InvalidGuestAddress(addr) => { + Error::from(format!("Invalid guest address: {:#x}", addr.raw_value())) + } + GuestMemoryError::InvalidBackendAddress => Error::from("Invalid backend memory address"), + GuestMemoryError::GuestAddressOverflow => { + Error::from("Guest address addition resulted in an overflow") + } + GuestMemoryError::CallbackOutOfRange => { + Error::from("Callback accessed memory out of range") + } + GuestMemoryError::IOError(io_err) => Error::with_error("Guest memory I/O error", io_err), + other_err => Error::with_error("An unexpected guest memory error occurred", other_err), + } +} + +impl AddressSpace { + /// The write interface of `AddressSpace`. + /// + /// This function is similar to `address_space_write` in C side. + /// + /// But it assumes the memory attributes is MEMTXATTRS_UNSPECIFIED. + pub fn write(&self, buf: &[u8], addr: GuestAddress) -> Result<usize> { + rcu_read_lock(); + let r = self.memory().deref().write(buf, addr); + rcu_read_unlock(); + r.map_err(guest_mem_err_to_qemu_err) + } + + /// The read interface of `AddressSpace`. + /// + /// This function is similar to `address_space_read_full` in C side. + /// + /// But it assumes the memory attributes is MEMTXATTRS_UNSPECIFIED. + /// + /// It should also be noted that this function does not support the fast + /// path like `address_space_read` in C side. + pub fn read(&self, buf: &mut [u8], addr: GuestAddress) -> Result<usize> { + rcu_read_lock(); + let r = self.memory().deref().read(buf, addr); + rcu_read_unlock(); + r.map_err(guest_mem_err_to_qemu_err) + } + + /// The store interface of `AddressSpace`. + /// + /// This function is similar to `address_space_st{size}` in C side. + /// + /// But it only assumes @val follows target-endian by default. So ensure + /// the endian of `val` aligned with target, before using this method. + /// + /// And it assumes the memory attributes is MEMTXATTRS_UNSPECIFIED. + pub fn store<T: AtomicAccess>(&self, addr: GuestAddress, val: T) -> Result<()> { + rcu_read_lock(); + let r = self.memory().deref().store(val, addr, Ordering::Relaxed); + rcu_read_unlock(); + r.map_err(guest_mem_err_to_qemu_err) + } + + /// The load interface of `AddressSpace`. + /// + /// This function is similar to `address_space_ld{size}` in C side. + /// + /// But it only support target-endian by default. The returned value is + /// with target-endian. + /// + /// And it assumes the memory attributes is MEMTXATTRS_UNSPECIFIED. + pub fn load<T: AtomicAccess>(&self, addr: GuestAddress) -> Result<T> { + rcu_read_lock(); + let r = self.memory().deref().load(addr, Ordering::Relaxed); + rcu_read_unlock(); + r.map_err(guest_mem_err_to_qemu_err) + } +} + +/// The safe binding around [`bindings::address_space_memory`]. +/// +/// `ADDRESS_SPACE_MEMORY` provides the complete address space +/// abstraction for the whole Guest memory. +pub static ADDRESS_SPACE_MEMORY: &AddressSpace = unsafe { + let ptr: *const bindings::AddressSpace = addr_of!(address_space_memory); + + // SAFETY: AddressSpace is #[repr(transparent)]. + let wrapper_ptr: *const AddressSpace = ptr.cast(); + + // SAFETY: `address_space_memory` structure is valid in C side during + // the whole QEMU life. + &*wrapper_ptr +}; -- 2.34.1