Tao Tang <[email protected]> writes:
> Introduce qos-smmuv3, a reusable library for SMMUv3-related qtest
> operations. This module encapsulates common tasks like:
>
> - SMMUv3 initialization (enabling, configuring command/event queues)
> - Stream Table Entry (STE) and Context Descriptor (CD) setup
> - Multi-level page table construction (L0-L3 for 4KB granules)
> - Support for Stage 1, Stage 2, and nested translation modes
> - Could be easily extended to support multi-space testing infrastructure
> (Non-Secure, Secure, Root, Realm)
>
> The library provides high-level abstractions that allow test code to
> focus on IOMMU behavior validation rather than low-level register
> manipulation and page table encoding. Key features include:
>
> - Automatic memory allocation for translation structures with proper
> alignment
> - Helper functions to build valid STEs/CDs for different translation
> scenarios
> - Page table walkers that handle address offset calculations per
> security space
> - Command queue management for SMMU configuration commands
>
> This infrastructure is designed to be used by iommu-testdev-based tests
> and future SMMUv3 test suites, reducing code duplication and improving
> test maintainability.
>
> Signed-off-by: Tao Tang <[email protected]>
> ---
> tests/qtest/libqos/meson.build | 3 +
> tests/qtest/libqos/qos-smmuv3.c | 920 ++++++++++++++++++++++++++++++++
> tests/qtest/libqos/qos-smmuv3.h | 291 ++++++++++
> 3 files changed, 1214 insertions(+)
> create mode 100644 tests/qtest/libqos/qos-smmuv3.c
> create mode 100644 tests/qtest/libqos/qos-smmuv3.h
>
> diff --git a/tests/qtest/libqos/meson.build b/tests/qtest/libqos/meson.build
> index 1ddaf7b095..8d6758ec2b 100644
> --- a/tests/qtest/libqos/meson.build
> +++ b/tests/qtest/libqos/meson.build
> @@ -60,6 +60,9 @@ libqos_srcs = files(
> 'x86_64_pc-machine.c',
> 'riscv-virt-machine.c',
> 'loongarch-virt-machine.c',
> +
> + # SMMU:
> + 'qos-smmuv3.c',
> )
>
> if have_virtfs
> diff --git a/tests/qtest/libqos/qos-smmuv3.c b/tests/qtest/libqos/qos-smmuv3.c
> new file mode 100644
> index 0000000000..1b97b8b5e6
> --- /dev/null
> +++ b/tests/qtest/libqos/qos-smmuv3.c
> @@ -0,0 +1,920 @@
> +/*
> + * QOS SMMUv3 Module
> + *
> + * This module provides SMMUv3-specific helper functions for libqos tests,
> + * encapsulating SMMUv3 setup, assertion, and cleanup operations.
> + *
> + * Copyright (c) 2025 Phytium Technology
> + *
> + * Author:
> + * Tao Tang <[email protected]>
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + */
> +
> +#include "qemu/osdep.h"
> +#include "tests/qtest/libqos/pci.h"
> +#include "hw/misc/iommu-testdev.h"
> +#include "qos-smmuv3.h"
> +
> +/* STE/CD field setting macros */
> +#define QSMMU_STE_OR_CD_ENTRY_BYTES 64
> +#define QSMMU_STE_S2T0SZ_VAL 0x14
> +
> +#define QSMMU_STE_SET_VALID(ste, val) \
> + ((ste)->word[0] = ((ste)->word[0] & ~(0x1 << 0)) | \
> + (((val) & 0x1) << 0))
> +#define QSMMU_STE_SET_CONFIG(ste, val) \
> + ((ste)->word[0] = ((ste)->word[0] & ~(0x7 << 1)) | \
> + (((val) & 0x7) << 1))
> +#define QSMMU_STE_SET_S1FMT(ste, val) \
> + ((ste)->word[0] = ((ste)->word[0] & ~(0x3 << 4)) | \
> + (((val) & 0x3) << 4))
> +
These macros are basically re-inventing what we have in
include/hw/registerfields.h so instead you would have something like:
REG32(STE, 0)
FIELD(STE, VALID, 0, 1)
FIELD(STE, CONFIG, 1, 7)
FIELD(STE, S1FMT, 4, 2)
etc
However as these are mirroring smmuv3-internal.h why aren't we using
those?
The fuller solution would be to update smmuv3-internal to used the
REG/FIELD macros rather than doing it by hand. Although the register
field API existed then we weren't so keen to standardise all this
boilerplate back then.
> +#define QSMMU_STE_SET_CTXPTR(ste, val) do { \
> + (ste)->word[0] = ((ste)->word[0] & 0x0000003fu) | \
> + ((uint32_t)(val) & 0xffffffc0u); \
> + (ste)->word[1] = ((ste)->word[1] & 0xffff0000u) | \
> + ((uint32_t)(((uint64_t)(val)) >> 32) & \
> + 0x0000ffffu); \
> +} while (0)
> +
> +#define QSMMU_STE_SET_S1CDMAX(ste, val) \
> + ((ste)->word[1] = ((ste)->word[1] & ~(0x1f << 27)) | \
> + (((val) & 0x1f) << 27))
> +#define QSMMU_STE_SET_S1STALLD(ste, val) \
> + ((ste)->word[2] = ((ste)->word[2] & ~(0x1 << 27)) | \
> + (((val) & 0x1) << 27))
> +#define QSMMU_STE_SET_EATS(ste, val) \
> + ((ste)->word[2] = ((ste)->word[2] & ~(0x3 << 28)) | \
> + (((val) & 0x3) << 28))
> +#define QSMMU_STE_SET_STRW(ste, val) \
> + ((ste)->word[2] = ((ste)->word[2] & ~(0x3 << 30)) | \
> + (((val) & 0x3) << 30))
> +#define QSMMU_STE_SET_NSCFG(ste, val) \
> + ((ste)->word[2] = ((ste)->word[2] & ~(0x3 << 14)) | \
> + (((val) & 0x3) << 14))
> +#define QSMMU_STE_SET_S2VMID(ste, val) \
> + ((ste)->word[4] = ((ste)->word[4] & ~0xffff) | ((val) & 0xffff))
> +#define QSMMU_STE_SET_S2T0SZ(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~0x3f) | ((val) & 0x3f))
> +#define QSMMU_STE_SET_S2SL0(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x3 << 6)) | \
> + (((val) & 0x3) << 6))
> +#define QSMMU_STE_SET_S2TG(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x3 << 14)) | \
> + (((val) & 0x3) << 14))
> +#define QSMMU_STE_SET_S2PS(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x7 << 16)) | \
> + (((val) & 0x7) << 16))
> +#define QSMMU_STE_SET_S2AA64(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 19)) | \
> + (((val) & 0x1) << 19))
> +#define QSMMU_STE_SET_S2ENDI(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 20)) | \
> + (((val) & 0x1) << 20))
> +#define QSMMU_STE_SET_S2AFFD(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 21)) | \
> + (((val) & 0x1) << 21))
> +#define QSMMU_STE_SET_S2HD(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 23)) | \
> + (((val) & 0x1) << 23))
> +#define QSMMU_STE_SET_S2HA(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 24)) | \
> + (((val) & 0x1) << 24))
> +#define QSMMU_STE_SET_S2S(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 25)) | \
> + (((val) & 0x1) << 25))
> +#define QSMMU_STE_SET_S2R(ste, val) \
> + ((ste)->word[5] = ((ste)->word[5] & ~(0x1 << 26)) | \
> + (((val) & 0x1) << 26))
> +
> +#define QSMMU_STE_SET_S2TTB(ste, val) do { \
> + (ste)->word[6] = ((ste)->word[6] & 0x0000000fu) | \
> + ((uint32_t)(val) & 0xfffffff0u); \
> + (ste)->word[7] = ((ste)->word[7] & 0xfff00000u) | \
> + ((uint32_t)(((uint64_t)(val)) >> 32) & \
> + 0x000fffffu); \
> +} while (0)
> +
> +/* CD field setting macros */
> +#define QSMMU_CD_SET_VALID(cd, val) \
> + ((cd)->word[0] = ((cd)->word[0] & ~(0x1 << 31)) | \
> + (((val) & 0x1) << 31))
> +#define QSMMU_CD_SET_TSZ(cd, sel, val) \
> + ((cd)->word[0] = ((cd)->word[0] & \
> + ~(0x3f << ((sel) * 16 + 0))) | \
> + (((val) & 0x3f) << ((sel) * 16 + 0)))
> +#define QSMMU_CD_SET_TG(cd, sel, val) \
> + ((cd)->word[0] = ((cd)->word[0] & \
> + ~(0x3 << ((sel) * 16 + 6))) | \
> + (((val) & 0x3) << ((sel) * 16 + 6)))
> +#define QSMMU_CD_SET_EPD(cd, sel, val) \
> + ((cd)->word[0] = ((cd)->word[0] & \
> + ~(0x1 << ((sel) * 16 + 14))) | \
> + (((val) & 0x1) << ((sel) * 16 + 14)))
> +#define QSMMU_CD_SET_ENDI(cd, val) \
> + ((cd)->word[0] = ((cd)->word[0] & ~(0x1 << 15)) | \
> + (((val) & 0x1) << 15))
> +#define QSMMU_CD_SET_IPS(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x7 << 0)) | \
> + (((val) & 0x7) << 0))
> +#define QSMMU_CD_SET_AFFD(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 3)) | \
> + (((val) & 0x1) << 3))
> +#define QSMMU_CD_SET_HD(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 10)) | \
> + (((val) & 0x1) << 10))
> +#define QSMMU_CD_SET_HA(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 11)) | \
> + (((val) & 0x1) << 11))
> +#define QSMMU_CD_SET_TTB(cd, sel, val) do { \
> + (cd)->word[(sel) * 2 + 2] = \
> + ((cd)->word[(sel) * 2 + 2] & 0x0000000f) | \
> + ((val) & 0xfffffff0); \
> + (cd)->word[(sel) * 2 + 3] = \
> + ((cd)->word[(sel) * 2 + 3] & 0xfff80000) | \
> + ((((uint64_t)(val)) >> 32) & 0x0007ffff); \
> +} while (0)
> +#define QSMMU_CD_SET_HAD(cd, sel, val) \
> + ((cd)->word[(sel) * 2 + 2] = \
> + ((cd)->word[(sel) * 2 + 2] & ~(0x1 << 1)) | \
> + (((val) & 0x1) << 1))
> +#define QSMMU_CD_SET_MAIR0(cd, val) ((cd)->word[6] = (val))
> +#define QSMMU_CD_SET_MAIR1(cd, val) ((cd)->word[7] = (val))
> +#define QSMMU_CD_SET_TCR_T0SZ(cd, val) \
> + ((cd)->word[4] = ((cd)->word[4] & ~0x3f) | ((val) & 0x3f))
> +#define QSMMU_CD_SET_ASID(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0xffff << 16)) | \
> + (((val) & 0xffff) << 16))
> +#define QSMMU_CD_SET_S(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 12)) | \
> + (((val) & 0x1) << 12))
> +#define QSMMU_CD_SET_R(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 13)) | \
> + (((val) & 0x1) << 13))
> +#define QSMMU_CD_SET_A(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 14)) | \
> + (((val) & 0x1) << 14))
> +#define QSMMU_CD_SET_AARCH64(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x1 << 9)) | \
> + (((val) & 0x1) << 9))
> +#define QSMMU_CD_SET_TBI(cd, val) \
> + ((cd)->word[1] = ((cd)->word[1] & ~(0x3 << 6)) | \
> + (((val) & 0x3) << 6))
> +#define QSMMU_CD_SET_NSCFG0(cd, val) \
> + ((cd)->word[2] = ((cd)->word[2] & ~(0x1 << 0)) | \
> + (((val) & 0x1) << 0))
> +#define QSMMU_CD_SET_NSCFG1(cd, val) \
> + ((cd)->word[4] = ((cd)->word[4] & ~(0x1 << 0)) | \
> + (((val) & 0x1) << 0))
> +
> +
> +/* STE and CD image structures */
> +typedef struct {
> + uint32_t word[8];
> +} STEImg;
> +
> +typedef struct {
> + uint32_t word[8];
> +} CDImg;
> +
again we are duplicating smmuv3-internal here.
> +/* Apply space offset to address */
> +static inline uint64_t qsmmu_apply_space_offs(QSMMUSpace sp,
> + uint64_t address)
> +{
> + return address + qsmmu_space_offset(sp);
> +}
> +
> +uint32_t qsmmu_expected_dma_result(QSMMUTestContext *ctx)
> +{
> + /* Currently only non-secure space is supported. */
> + if (ctx->tx_space != QSMMU_SPACE_NONSECURE) {
> + return ITD_DMA_ERR_TX_FAIL;
> + }
> + return 0;
> +}
> +
> +uint32_t qsmmu_build_dma_attrs(QSMMUSpace space)
> +{
> + uint32_t attrs = 0;
> + switch (space) {
> + case QSMMU_SPACE_NONSECURE:
> + /* Non-secure: secure=0, space=1 */
> + attrs = ITD_ATTRS_SET_SECURE(attrs, 0);
> + attrs = ITD_ATTRS_SET_SPACE(attrs, QSMMU_SPACE_NONSECURE);
> + break;
> + default:
> + g_assert_not_reached();
> + }
> +
> + return attrs;
> +}
> +
> +uint32_t qsmmu_setup_and_enable_translation(QSMMUTestContext *ctx)
> +{
> + uint32_t build_result;
> +
> + /* Trigger configuration */
> + qpci_io_writel(ctx->dev, ctx->bar, ITD_REG_TRANS_DBELL, 0x2);
> +
> + /* Build page tables and SMMU structures first */
> + build_result = qsmmu_build_translation(
> + ctx->qts, ctx->config.trans_mode,
> + ctx->tx_space, ctx->sid);
> + if (build_result != 0) {
> + g_test_message("Build failed: mode=%u sid=%u status=0x%x",
> + ctx->config.trans_mode, ctx->sid, build_result);
> + ctx->trans_status = build_result;
> + return ctx->trans_status;
> + }
> +
> + /* Program SMMU registers for the appropriate security space */
> + qsmmu_program_regs(ctx->qts, ctx->smmu_base, ctx->tx_space);
> +
> + /* Read configuration status */
> + ctx->trans_status = qpci_io_readl(ctx->dev, ctx->bar,
> + ITD_REG_TRANS_STATUS);
> +
> + return ctx->trans_status;
> +}
> +
> +uint32_t qsmmu_trigger_dma(QSMMUTestContext *ctx)
> +{
> + uint32_t result, attrs_val;
> + int i;
> +
> + /* Program DMA parameters */
> + qpci_io_writel(ctx->dev, ctx->bar, ITD_REG_DMA_GVA_LO,
> + (uint32_t)ctx->config.dma_iova);
> + qpci_io_writel(ctx->dev, ctx->bar, ITD_REG_DMA_GVA_HI,
> + (uint32_t)(ctx->config.dma_iova >> 32));
> + qpci_io_writel(ctx->dev, ctx->bar, ITD_REG_DMA_LEN,
> + ctx->config.dma_len);
> +
> + /*
> + * Build and write DMA attributes based on device security state.
> + *
> + * We only support Non-secure state for now. But in future, this can be
> + * extended to support static Secure state or dynamic Realm state as
> well.
> + */
> + attrs_val = qsmmu_build_dma_attrs(QSMMU_SPACE_NONSECURE);
> + qpci_io_writel(ctx->dev, ctx->bar, ITD_REG_DMA_ATTRS, attrs_val);
> +
> + /* Flip status */
> + qpci_io_writel(ctx->dev, ctx->bar, ITD_REG_DMA_DBELL, 1);
> +
> + /* Trigger DMA by reading ID register */
> + qpci_io_readl(ctx->dev, ctx->bar, ITD_REG_DMA_TRIGGERING);
> +
> + /* Poll for DMA completion */
> + for (i = 0; i < 1000; i++) {
> + result = qpci_io_readl(ctx->dev, ctx->bar, ITD_REG_DMA_RESULT);
> + if (result != ITD_DMA_RESULT_BUSY) {
> + ctx->dma_result = result;
> + break;
> + }
> + g_usleep(1000);
> + }
> +
> + /* Fallback for timeout */
> + if (ctx->dma_result == ITD_DMA_RESULT_BUSY) {
> + ctx->dma_result = ITD_DMA_ERR_TX_FAIL;
> + }
> +
> + return ctx->dma_result;
> +}
> +
> +static void qsmmu_push_cfgi_cmd(QTestState *qts, uint64_t smmu_base,
> + QSMMUSpace bank_sp, uint32_t type,
> + uint32_t sid, bool ssec)
> +{
> + hwaddr bank_off;
> + uint32_t new_prod, base_lo, base_hi, log2size, prod;
> + uint32_t index_mask, slot, words[4];
> + uint64_t base, qbase, entry_pa;
> + int i;
> +
> + /* Only non-secure commands are supported for now */
> + g_assert_false(ssec);
> +
> + bank_off = 0;
> +
> + /* Read CMDQ_BASE register */
> + base_lo = qtest_readl(qts, smmu_base + bank_off +
> + QSMMU_REG_CMDQ_BASE);
> + base_hi = qtest_readl(qts, smmu_base + bank_off +
> + QSMMU_REG_CMDQ_BASE + 4);
> + base = ((uint64_t)base_hi << 32) | base_lo;
> + log2size = base & 0x1f;
> + qbase = base & QSMMU_BASE_ADDR_MASK;
> +
> + /* Read CMDQ_PROD register */
> + prod = qtest_readl(qts, smmu_base + bank_off +
> + QSMMU_REG_CMDQ_PROD);
> + index_mask = (1u << log2size) - 1u;
> + slot = prod & index_mask;
> + entry_pa = qbase + (uint64_t)slot * 16u;
> +
> + /* Prepare command words */
> + memset(words, 0, sizeof(words));
> + words[0] = (type & 0xff) | (ssec ? (1u << 10) : 0u);
> + words[1] = sid;
> +
> + /* Write command to the command queue */
> + for (i = 0; i < 4; i++) {
> + qtest_writel(qts, entry_pa + i * 4, words[i]);
> + }
> +
> + /* Update PROD to trigger command handler */
> + new_prod = (prod + 1) & ((1u << (log2size + 1)) - 1u);
> + qtest_writel(qts, smmu_base + bank_off + QSMMU_REG_CMDQ_PROD, new_prod);
> +}
> +
> +void qsmmu_cleanup_translation(QSMMUTestContext *ctx)
> +{
> + static const QSMMUSpace spaces[] = { QSMMU_SPACE_NONSECURE };
> + uint32_t sid;
> + uint64_t ste_addr, ste_addr_real, cd_addr_real;
> + QSMMUSpace build_space;
> + int idx, i;
> +
> + sid = ctx->sid;
> + ste_addr = sid * QSMMU_STE_OR_CD_ENTRY_BYTES + QSMMU_STR_TAB_BASE;
> +
> + /* Clear page table entries and configuration structures */
> + for (idx = 0; idx < ARRAY_SIZE(spaces); idx++) {
> + build_space = spaces[idx];
> +
> + ste_addr_real = qsmmu_apply_space_offs(build_space, ste_addr);
> + /* Clear STE (8 words) */
> + for (i = 0; i < 8; i++) {
> + qtest_writel(ctx->qts, ste_addr_real + i * 4, 0);
> + }
> +
> + cd_addr_real = qsmmu_apply_space_offs(build_space, QSMMU_CD_GPA);
> + /* Clear CD (8 words) */
> + for (i = 0; i < 8; i++) {
> + qtest_writel(ctx->qts, cd_addr_real + i * 4, 0);
> + g_assert_cmpint(qtest_readl(ctx->qts, cd_addr_real + i * 4), ==,
> 0);
> + }
> + }
> +
> + /* Invalidate SMMU caches via configuration invalidation commands */
> + if (ctx->smmu_base) {
> + /* Issue cache invalidation commands to SMMU */
> + qsmmu_push_cfgi_cmd(ctx->qts, ctx->smmu_base, QSMMU_SPACE_NONSECURE,
> + QSMMU_CMD_CFGI_STE, sid, false);
> + qsmmu_push_cfgi_cmd(ctx->qts, ctx->smmu_base, QSMMU_SPACE_NONSECURE,
> + QSMMU_CMD_CFGI_CD, sid, false);
> + qsmmu_push_cfgi_cmd(ctx->qts, ctx->smmu_base, QSMMU_SPACE_NONSECURE,
> + QSMMU_CMD_TLBI_NSNH_ALL, sid, false);
> + }
> +}
> +
> +bool qsmmu_validate_test_result(QSMMUTestContext *ctx)
> +{
> + uint32_t expected = qsmmu_expected_dma_result(ctx);
> + g_test_message("-> Validating result: expected=0x%x actual=0x%x",
> + expected, ctx->dma_result);
> + return (ctx->dma_result == expected);
> +}
> +
> +QSMMUSpace qsmmu_sec_sid_to_space(QSMMUSecSID sec_sid)
> +{
> + switch (sec_sid) {
> + case QSMMU_SEC_SID_NONSECURE:
> + return QSMMU_SPACE_NONSECURE;
> + case QSMMU_SEC_SID_SECURE:
> + return QSMMU_SPACE_SECURE;
> + case QSMMU_SEC_SID_REALM:
> + return QSMMU_SPACE_REALM;
> + case QSMMU_SEC_SID_ROOT:
> + return QSMMU_SPACE_ROOT;
> + default:
> + g_assert_not_reached();
> + }
> +}
> +
> +uint64_t qsmmu_space_offset(QSMMUSpace sp)
> +{
> + switch (sp) {
> + case QSMMU_SPACE_NONSECURE:
> + return QSMMU_SPACE_OFFS_NS;
> + default:
> + g_assert_not_reached();
> + }
> +}
> +
> +void qsmmu_single_translation(QSMMUTestContext *ctx)
> +{
> + uint32_t config_result;
> + uint32_t dma_result;
> + bool test_passed;
> +
> + /* Configure SMMU translation */
> + config_result = qsmmu_setup_and_enable_translation(ctx);
> + if (config_result != 0) {
> + g_test_message("Configuration failed: mode=%u status=0x%x",
> + ctx->config.trans_mode, config_result);
> + return;
> + }
> +
> + /* Trigger DMA operation */
> + dma_result = qsmmu_trigger_dma(ctx);
> + if (dma_result != 0) {
> + g_test_message("DMA failed: mode=%u result=0x%x",
> + ctx->config.trans_mode, dma_result);
> + } else {
> + g_test_message("-> DMA succeeded: mode=%u", ctx->config.trans_mode);
> + }
> +
> + /* Validate test result */
> + test_passed = qsmmu_validate_test_result(ctx);
> + g_assert_true(test_passed);
> +
> + /* Clean up translation state to prepare for the next test */
> + qsmmu_cleanup_translation(ctx);
> +}
> +
> +void qsmmu_translation_batch(const QSMMUTestConfig *configs,
> + size_t count,
> + QTestState *qts,
> + QPCIDevice *dev,
> + QPCIBar bar,
> + uint64_t smmu_base)
> +{
> + int i;
> + /* Initialize test memory */
> + for (i = 0; i < count; i++) {
> + qtest_memset(qts, configs[i].dma_iova, 0x00, configs[i].dma_len);
> + }
> + /* Execute each test configuration */
> + for (i = 0; i < count; i++) {
> + QSMMUTestContext ctx = {
> + .qts = qts,
> + .dev = dev,
> + .bar = bar,
> + .smmu_base = smmu_base,
> + .config = configs[i],
> + .trans_status = 0,
> + .dma_result = 0,
> + .sid = dev->devfn,
> + .tx_space = qsmmu_sec_sid_to_space(configs[i].sec_sid),
> + };
> +
> + qsmmu_single_translation(&ctx);
> + g_test_message("--> Test %d completed: mode=%u sec_sid=%u "
> + "status=0x%x result=0x%x", i, configs[i].trans_mode,
> + configs[i].sec_sid, ctx.trans_status, ctx.dma_result);
> + }
> +}
> +
> +uint32_t qsmmu_build_translation(QTestState *qts, QSMMUTransMode mode,
> + QSMMUSpace tx_space, uint32_t sid)
> +{
> + uint64_t ste_addr, ste_addr_real, cd_addr_real;
> + uint64_t cd_ttb, vttb, vttb_real;
> + uint8_t nscfg0, nscfg1;
> + QSMMUSpace build_space;
> + STEImg ste;
> + CDImg cd;
> + int i;
> +
> + build_space = tx_space;
> + /* Only Non-Secure space is supported */
> + if (build_space != QSMMU_SPACE_NONSECURE) {
> + return 0xdeadbeafu;
> + }
> +
> + /* Build STE image */
> + memset(&ste, 0, sizeof(ste));
> + switch (mode) {
> + case QSMMU_TM_S1_ONLY:
> + QSMMU_STE_SET_CONFIG(&ste, 0x5);
> + break;
> + case QSMMU_TM_S2_ONLY:
> + QSMMU_STE_SET_CONFIG(&ste, 0x6);
> + break;
> + case QSMMU_TM_NESTED:
> + default:
> + QSMMU_STE_SET_CONFIG(&ste, 0x7);
> + break;
> + }
> +
> + QSMMU_STE_SET_VALID(&ste, 1);
> + QSMMU_STE_SET_S2T0SZ(&ste, QSMMU_STE_S2T0SZ_VAL);
> + QSMMU_STE_SET_S2SL0(&ste, 0x2);
> + QSMMU_STE_SET_S2TG(&ste, 0);
> + QSMMU_STE_SET_S2PS(&ste, 0x5);
> + QSMMU_STE_SET_S2AA64(&ste, 1);
> + QSMMU_STE_SET_S2ENDI(&ste, 0);
> + QSMMU_STE_SET_S2AFFD(&ste, 0);
> +
> + /*
> + * The consistent policy also extends to pointer fetches. For cases that
> + * require reading STE.S1ContextPtr or STE.S2TTB, we still follow the
> same
> + * policy:
> + * - The PA space security attribute of the address pointed to
> + * (e.g., the CD or S2L1 table) must also match the input 'SEC_SID'.
> + */
> + cd_addr_real = qsmmu_apply_space_offs(build_space, QSMMU_CD_GPA);
> + QSMMU_STE_SET_CTXPTR(&ste, cd_addr_real);
> +
> + vttb = QSMMU_VTTB;
> + vttb_real = qsmmu_apply_space_offs(build_space, vttb);
> + QSMMU_STE_SET_S2TTB(&ste, vttb_real);
> +
> + ste_addr = sid * QSMMU_STE_OR_CD_ENTRY_BYTES + QSMMU_STR_TAB_BASE;
> + ste_addr_real = qsmmu_apply_space_offs(build_space, ste_addr);
> +
> + /* Write STE to memory */
> + for (i = 0; i < 8; i++) {
> + qtest_writel(qts, ste_addr_real + i * 4, ste.word[i]);
> + }
> +
> + switch (tx_space) {
> + case QSMMU_SPACE_NONSECURE:
> + nscfg0 = 0x1;
> + nscfg1 = 0x1;
> + break;
> + default:
> + g_assert_not_reached();
> + }
> + /* Build CD image for S1 path if needed */
> + if (mode != QSMMU_TM_S2_ONLY) {
> + memset(&cd, 0, sizeof(cd));
> +
> + QSMMU_CD_SET_ASID(&cd, 0x1e20);
> + QSMMU_CD_SET_AARCH64(&cd, 1);
> + QSMMU_CD_SET_VALID(&cd, 1);
> + QSMMU_CD_SET_A(&cd, 1);
> + QSMMU_CD_SET_S(&cd, 0);
> + QSMMU_CD_SET_HD(&cd, 0);
> + QSMMU_CD_SET_HA(&cd, 0);
> + QSMMU_CD_SET_IPS(&cd, 0x4);
> + QSMMU_CD_SET_TBI(&cd, 0x0);
> + QSMMU_CD_SET_AFFD(&cd, 0x0);
> + QSMMU_CD_SET_EPD(&cd, 0, 0x0);
> + QSMMU_CD_SET_EPD(&cd, 1, 0x1);
> + QSMMU_CD_SET_TSZ(&cd, 0, 0x10);
> + QSMMU_CD_SET_TG(&cd, 0, 0x0);
> + QSMMU_CD_SET_ENDI(&cd, 0x0);
> +
> + QSMMU_CD_SET_NSCFG0(&cd, nscfg0);
> + QSMMU_CD_SET_NSCFG1(&cd, nscfg1);
> + QSMMU_CD_SET_R(&cd, 0x1);
> + cd_ttb = vttb_real;
> + QSMMU_CD_SET_TTB(&cd, 0, cd_ttb);
> +
> + for (i = 0; i < 8; i++) {
> + /* TODO: Maybe need more work to write to secure RAM in future */
> + qtest_writel(qts, cd_addr_real + i * 4, cd.word[i]);
> + g_assert_cmpint(qtest_readl(qts, cd_addr_real + i * 4), ==,
> + cd.word[i]);
> + }
> + }
> +
> + qsmmu_setup_translation_tables(qts, QSMMU_IOVA_OR_IPA, build_space,
> + false, mode);
> + /* Nested extras: CD S2 tables */
> + if (mode == QSMMU_TM_NESTED) {
> + /*
> + * Extra Stage 2 page tables is needed if
> + * SMMUTranslationClass == SMMU_CLASS_CD
> + * as smmuv3_do_translate would translate an IPA of the CD to the
> final
> + * output CD after a Stage 2 translation.
> + */
> + qsmmu_setup_translation_tables(qts, cd_addr_real, build_space,
> + true, mode);
> + }
> +
> + return 0;
> +}
> +
> +uint64_t qsmmu_bank_base(uint64_t base, QSMMUSpace sp)
> +{
> + switch (sp) {
> + case QSMMU_SPACE_NONSECURE:
> + return base;
> + default:
> + g_assert_not_reached();
> + }
> +}
> +
> +void qsmmu_program_bank(QTestState *qts, uint64_t bank_base, QSMMUSpace sp)
> +{
> + uint64_t cmdq_base, eventq_base, strtab_base;
> +
> + qtest_writel(qts, bank_base + QSMMU_REG_GBPA, 0x80000000); /* UPDATE */
> + qtest_writel(qts, bank_base + QSMMU_REG_CR0, 0x0); /* Disable */
> + qtest_writel(qts, bank_base + QSMMU_REG_CR1, 0x0d75); /* Config */
> +
> + /* CMDQ_BASE: add address-space offset*/
> + cmdq_base = qsmmu_apply_space_offs(sp, QSMMU_CMDQ_BASE_ADDR);
> + cmdq_base |= 0x0a; /* Size and valid bits */
> + qtest_writeq(qts, bank_base + QSMMU_REG_CMDQ_BASE, cmdq_base);
> +
> + qtest_writel(qts, bank_base + QSMMU_REG_CMDQ_CONS, 0x0);
> + qtest_writel(qts, bank_base + QSMMU_REG_CMDQ_PROD, 0x0);
> +
> + /* EVENTQ_BASE: add address-space offset */
> + eventq_base = qsmmu_apply_space_offs(sp, QSMMU_EVENTQ_BASE_ADDR);
> + eventq_base |= 0x0a; /* Size and valid bits */
> + qtest_writeq(qts, bank_base + QSMMU_REG_EVENTQ_BASE, eventq_base);
> +
> + qtest_writel(qts, bank_base + QSMMU_REG_EVENTQ_PROD, 0x0);
> + qtest_writel(qts, bank_base + QSMMU_REG_EVENTQ_CONS, 0x0);
> +
> + /* STRTAB_BASE_CFG: linear stream table, LOG2SIZE=5 */
> + qtest_writel(qts, bank_base + QSMMU_REG_STRTAB_CFG, 0x5);
> +
> + /* STRTAB_BASE: add address-space offset */
> + strtab_base = qsmmu_apply_space_offs(sp, QSMMU_STR_TAB_BASE);
> + qtest_writeq(qts, bank_base + QSMMU_REG_STRTAB_BASE, strtab_base);
> +
> + /* CR0: Enable SMMU with appropriate flags */
> + qtest_writel(qts, bank_base + QSMMU_REG_CR0, 0xd);
> +}
> +
> +void qsmmu_program_regs(QTestState *qts, uint64_t smmu_base, QSMMUSpace
> space)
> +{
> + uint64_t sp_base;
> + /* Always program Non-Secure bank first */
> + uint64_t ns_base = qsmmu_bank_base(smmu_base, QSMMU_SPACE_NONSECURE);
> + qsmmu_program_bank(qts, ns_base, QSMMU_SPACE_NONSECURE);
> +
> + /* Program the requested space if different from Non-Secure */
> + sp_base = qsmmu_bank_base(smmu_base, space);
> + if (sp_base != ns_base) {
> + qsmmu_program_bank(qts, sp_base, space);
> + }
> +}
> +
> +static uint32_t qsmmu_get_table_index(uint64_t addr, int level)
> +{
> + switch (level) {
> + case 0:
> + return (addr >> 39) & 0x1ff;
> + case 1:
> + return (addr >> 30) & 0x1ff;
> + case 2:
> + return (addr >> 21) & 0x1ff;
> + case 3:
> + return (addr >> 12) & 0x1ff;
> + default:
> + g_assert_not_reached();
> + }
> +}
> +
> +static uint64_t qsmmu_get_table_addr(uint64_t base, int level, uint64_t iova)
> +{
> + uint32_t index = qsmmu_get_table_index(iova, level);
> + return (base & QSMMU_PTE_MASK) + (index * 8);
> +}
> +
> +/*
> + * qsmmu_get_pte_attrs - Calculate the S1 leaf PTE value
> + *
> + * IOMMU need to set different attributes for PTEs based on the translation
> mode
> + */
> +static uint64_t qsmmu_get_pte_attrs(QSMMUTransMode mode, bool is_leaf,
> + QSMMUSpace space)
> +{
> + uint64_t rw_mask = QSMMU_LEAF_PTE_RW_MASK;
> + uint64_t ro_mask = QSMMU_LEAF_PTE_RO_MASK;
> + uint64_t non_leaf_mask = QSMMU_NON_LEAF_PTE_MASK;
> +
> + switch (space) {
> + case QSMMU_SPACE_NONSECURE:
> + break;
> + default:
> + g_assert_not_reached();
> + }
> +
> + if (!is_leaf) {
> + return non_leaf_mask;
> + }
> +
> + /* For leaf PTE */
> + if (mode == QSMMU_TM_NESTED || mode == QSMMU_TM_S1_ONLY) {
> + return rw_mask;
> + }
> +
> + return ro_mask;
> +}
> +
> +/*
> + * qsmmu_setup_s2_walk_for_ipa - Setup Stage 2 page table walk for an IPA
> + *
> + * @qts: QTest state handle
> + * @space: Security space
> + * @ipa: Intermediate Physical Address to translate
> + * @s2_vttb: Stage 2 VTTB (page table base)
> + * @mode: Translation mode
> + * @is_final: Whether this is the final S2 walk (not nested within S1)
> + *
> + * Calculates and writes a 4-level Stage 2 page table walk for the given IPA.
> + * This function dynamically generates and writes all page table entries
> + * (L0-L3) to guest memory based on the input IPA and configuration.
> + */
> +static void qsmmu_setup_s2_walk_for_ipa(QTestState *qts,
> + QSMMUSpace space,
> + uint64_t ipa,
> + uint64_t s2_vttb,
> + QSMMUTransMode mode,
> + bool is_final)
> +{
> + uint64_t all_s2_l0_pte_val;
> + uint64_t all_s2_l1_pte_val;
> + uint64_t all_s2_l2_pte_val;
> + uint64_t all_s2_l3_pte_val;
> + uint64_t s2_l0_addr, s2_l1_addr, s2_l2_addr, s2_l3_addr;
> +
> + /* Shared intermediate PTE values for all S2 walks */
> + all_s2_l0_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L0_PTE_VAL | qsmmu_get_pte_attrs(mode, false, space));
> + all_s2_l1_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L1_PTE_VAL | qsmmu_get_pte_attrs(mode, false, space));
> + all_s2_l2_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L2_PTE_VAL | qsmmu_get_pte_attrs(mode, false, space));
> +
> + /* Stage 2 Level 0 */
> + s2_l0_addr = qsmmu_get_table_addr(s2_vttb, 0, ipa);
> + qtest_writeq(qts, s2_l0_addr, all_s2_l0_pte_val);
> +
> + /* Stage 2 Level 1 */
> + s2_l1_addr = qsmmu_get_table_addr(all_s2_l0_pte_val, 1, ipa);
> + qtest_writeq(qts, s2_l1_addr, all_s2_l1_pte_val);
> +
> + /* Stage 2 Level 2 */
> + s2_l2_addr = qsmmu_get_table_addr(all_s2_l1_pte_val, 2, ipa);
> + qtest_writeq(qts, s2_l2_addr, all_s2_l2_pte_val);
> +
> + /* Stage 2 Level 3 (leaf) */
> + s2_l3_addr = qsmmu_get_table_addr(all_s2_l2_pte_val, 3, ipa);
> +
> + /*
> + * Stage 2 L3 PTE attributes depend on the context:
> + * - For nested S1 table address translations (!is_final):
> + * Use LEAF attrs (0x763) because these PTEs map S1 table pages
> directly
> + * - For final S2 walk (is_final):
> + * Use TABLE attrs (0x7e3) for the final IPA→PA mapping
> + */
> + if (!is_final) {
> + all_s2_l3_pte_val =
> + (ipa & QSMMU_PTE_MASK) |
> + qsmmu_get_pte_attrs(QSMMU_TM_NESTED, true, space);
> + } else {
> + all_s2_l3_pte_val =
> + (ipa & QSMMU_PTE_MASK) |
> + qsmmu_get_pte_attrs(QSMMU_TM_S2_ONLY, true, space);
> + }
> +
> + qtest_writeq(qts, s2_l3_addr, all_s2_l3_pte_val);
> +}
> +
> +/*
> + * qsmmu_setup_s1_level_with_nested_s2 - Setup S1 level with nested S2 walk
> + *
> + * @qts: QTest state handle
> + * @space: Security space
> + * @s1_level: Stage 1 level (0-3)
> + * @s1_pte_addr: Stage 1 PTE address (as IPA)
> + * @s1_pte_val: Stage 1 PTE value to write
> + * @s2_vttb: Stage 2 VTTB for nested translation
> + * @mode: Translation mode
> + *
> + * For nested translation, each S1 table access requires a full S2 walk
> + * to translate the S1 table's IPA to PA. This function performs the nested
> + * S2 walk and writes the S1 PTE value to guest memory.
> + */
> +static void qsmmu_setup_s1_level_with_nested_s2(QTestState *qts,
> + QSMMUSpace space,
> + int s1_level,
> + uint64_t s1_pte_addr,
> + uint64_t s1_pte_val,
> + uint64_t s2_vttb,
> + QSMMUTransMode mode)
> +{
> + /*
> + * Perform nested S2 walk to translate S1 table IPA to PA.
> + * This is always needed for S1_ONLY/S2_ONLY/NESTED modes because:
> + * - S1_ONLY: Needs S2 tables for "IPA as PA" mapping (for testing)
> + * - S2_ONLY: Needs S2 tables for direct translation
> + * - NESTED: Needs S2 tables for nested translation
> + */
> + qsmmu_setup_s2_walk_for_ipa(qts, space, s1_pte_addr,
> + s2_vttb, mode, false);
> +
> + /* Write the S1 PTE value */
> + qtest_writeq(qts, s1_pte_addr, s1_pte_val);
> +}
> +
> +/*
> + * qsmmu_setup_translation_tables - Setup SMMU translation tables
> + *
> + * The 'SEC_SID' represents the input security state of the
> device/transaction,
> + * whether it's a static Secure state or a dynamically-switched Realm state.
> + * SEC_SID has been converted to the corresponding SEcurity Space
> (QSMMUSpace)
> + * before calling this function.
> + *
> + * In a real SMMU translation, this input security state does not
> unilaterally
> + * determine the output Physical Address (PA) space. The output PA space is
> + * ultimately determined by attributes encountered during the page table
> walk,
> + * such as NSCFG and NSTable.
> + *
> + * However, for the specific context of testing the SMMU with the
> iommu-testdev,
> + * and to simplify the future support for Secure and Realm states, we adopt a
> + * consistent policy:
> + *
> + * - We always ensure that the page table attributes (e.g., nscfg, nstable)
> + * *match* the input 'SEC_SID' of the test case.
> + *
> + * For example: If 'SEC_SID' is Non-Secure, the corresponding nscfg and
> nstable
> + * attributes in the translation tables will always be set to 1.
> + *
> + */
> +void qsmmu_setup_translation_tables(QTestState *qts,
> + uint64_t iova,
> + QSMMUSpace space,
> + bool is_cd,
> + QSMMUTransMode mode)
> +{
> + uint64_t all_s2_l0_pte_val, all_s2_l1_pte_val, all_s2_l2_pte_val;
> + uint64_t s1_vttb, s2_vttb, s1_leaf_pte_val;
> + uint64_t l0_addr, l1_addr, l2_addr, l3_addr;
> +
> + g_test_message("Begin of construction: IOVA=0x%lx mode=%d
> is_building_CD=%s"
> + " ===", iova, mode, is_cd ? "yes" : "no");
> +
> + /* Initialize shared S2 PTE values used across all walks */
> + all_s2_l0_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L0_PTE_VAL | qsmmu_get_pte_attrs(mode, false, space));
> + all_s2_l1_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L1_PTE_VAL | qsmmu_get_pte_attrs(mode, false, space));
> + all_s2_l2_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L2_PTE_VAL | qsmmu_get_pte_attrs(mode, false, space));
> +
> + /* Both S1 and S2 share the same VTTB base */
> + s1_vttb = qsmmu_apply_space_offs(space, QSMMU_VTTB & QSMMU_PTE_MASK);
> + s2_vttb = s1_vttb;
> +
> + if (!is_cd) {
> + /*
> + * Setup Stage 1 page tables with nested Stage 2 walks.
> + * For each S1 level (L0-L3), we need to:
> + * 1. Calculate S1 PTE address (as IPA)
> + * 2. Perform nested S2 walk to translate that IPA to PA
> + * 3. Write the S1 PTE value
> + */
> +
> + /* Stage 1 Level 0 */
> + l0_addr = qsmmu_get_table_addr(s1_vttb, 0, iova);
> + qsmmu_setup_s1_level_with_nested_s2(qts, space, 0, l0_addr,
> + all_s2_l0_pte_val, s2_vttb,
> mode);
> +
> + /* Stage 1 Level 1 */
> + l1_addr = qsmmu_get_table_addr(all_s2_l0_pte_val & QSMMU_PTE_MASK,
> + 1, iova);
> + qsmmu_setup_s1_level_with_nested_s2(qts, space, 1, l1_addr,
> + all_s2_l1_pte_val, s2_vttb,
> mode);
> +
> + /* Stage 1 Level 2 */
> + l2_addr = qsmmu_get_table_addr(all_s2_l1_pte_val & QSMMU_PTE_MASK,
> + 2, iova);
> + qsmmu_setup_s1_level_with_nested_s2(qts, space, 2, l2_addr,
> + all_s2_l2_pte_val, s2_vttb,
> mode);
> +
> + /* Stage 1 Level 3 (leaf) */
> + l3_addr = qsmmu_get_table_addr(all_s2_l2_pte_val & QSMMU_PTE_MASK,
> + 3, iova);
> +
> + s1_leaf_pte_val = qsmmu_apply_space_offs(
> + space, QSMMU_L3_PTE_VAL | qsmmu_get_pte_attrs(mode, true, space)
> + );
> +
> + qsmmu_setup_s1_level_with_nested_s2(qts, space, 3, l3_addr,
> + s1_leaf_pte_val, s2_vttb, mode);
> + } else {
> + /*
> + * For CD address translation, we start directly with the IPA.
> + */
> + s1_leaf_pte_val = iova | qsmmu_get_pte_attrs(QSMMU_TM_NESTED,
> + false, space);
> + }
> +
> + /*
> + * Final Stage 2 walk: Translate the result from Stage 1.
> + * - For S1_ONLY: This is skipped in hardware but we set it up for
> testing
> + * - For S2_ONLY: This is the only walk
> + * - For NESTED: This translates the IPA from S1 to final PA
> + * - For CD address (is_cd=true): This is a table address, use !is_final
> + */
> + qsmmu_setup_s2_walk_for_ipa(qts, space, s1_leaf_pte_val, s2_vttb,
> + mode, !is_cd);
> +
> + /* Calculate and log final translated PA */
> + g_test_message("End of construction: PA=0x%llx ===",
> + (s1_leaf_pte_val & QSMMU_PTE_MASK) + (iova & 0xfff));
> +}
> diff --git a/tests/qtest/libqos/qos-smmuv3.h b/tests/qtest/libqos/qos-smmuv3.h
> new file mode 100644
> index 0000000000..366da774eb
> --- /dev/null
> +++ b/tests/qtest/libqos/qos-smmuv3.h
> @@ -0,0 +1,291 @@
> +/*
> + * QOS SMMUv3 Module
> + *
> + * This module provides SMMUv3-specific helper functions for libqos tests,
> + * encapsulating SMMUv3 setup, assertion, and cleanup operations.
> + *
> + * Copyright (c) 2025 Phytium Technology
> + *
> + * Author:
> + * Tao Tang <[email protected]>
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + */
> +
> +#ifndef QTEST_LIBQOS_SMMUV3_H
> +#define QTEST_LIBQOS_SMMUV3_H
> +
> +#include "hw/misc/iommu-testdev.h"
> +
> +#define VIRT_SMMU_BASE 0x0000000009050000ull
> +
> +/* SMMU command type */
> +#define QSMMU_CMD_CFGI_STE 0x03
> +#define QSMMU_CMD_CFGI_CD 0x05
> +#define QSMMU_CMD_TLBI_NSNH_ALL 0x30
> +
> +/* SMMU register offsets */
> +#define QSMMU_REG_GBPA 0x0044
> +#define QSMMU_REG_CR0 0x0020
> +#define QSMMU_REG_CR1 0x0028
> +#define QSMMU_REG_CMDQ_BASE 0x0090
> +#define QSMMU_REG_CMDQ_CONS 0x009c
> +#define QSMMU_REG_CMDQ_PROD 0x0098
> +#define QSMMU_REG_EVENTQ_BASE 0x00a0
> +#define QSMMU_REG_EVENTQ_PROD 0x00a8
> +#define QSMMU_REG_EVENTQ_CONS 0x00ac
> +#define QSMMU_REG_STRTAB_CFG 0x0088
> +#define QSMMU_REG_STRTAB_BASE 0x0080
> +
> +#define QSMMU_BASE_ADDR_MASK 0xfffffffffffc0
> +
> +/* SMMU queue and table base addresses */
> +#define QSMMU_CMDQ_BASE_ADDR 0x000000000e16b000ull
> +#define QSMMU_EVENTQ_BASE_ADDR 0x000000000e170000ull
> +
> +/*
> + * Translation tables and descriptors for a mapping of
> + * - IOVA(Stage 1 only)
> + * - IPA (Stage 2 only)
> + * to GPA.
> + *
> + * The translation is based on the Arm architecture with the following
> + * prerequisites:
> + * - Granule size: 4KB pages.
> + * - Page table levels: 4 levels (L0, L1, L2, L3), starting at level 0.
> + * - IOVA size: The walk resolves a IOVA: 0x8080604567
> + * - Address space: The 4-level lookup with 4KB granules supports up to a
> + * 48-bit (256TB) virtual address space. Each level uses a 9-bit index
> + * (512 entries per table). The breakdown is:
> + * - L0 index: IOVA bits [47:39]
> + * - L1 index: IOVA bits [38:30]
> + * - L2 index: IOVA bits [29:21]
> + * - L3 index: IOVA bits [20:12]
> + * - Page offset: IOVA bits [11:0]
> + *
> + * NOTE: All physical addresses defined here (QSMMU_VTTB, table addresses,
> etc.)
> + * appear to be within a secure RAM region. In practice, an offset is added
> + * to these values to place them in non-secure RAM. For example, when running
> + * in a virt machine type, the RAM base address (e.g., 0x40000000) is added
> to
> + * these constants.
> + */
> +#define QSMMU_IOVA_OR_IPA 0x0000008080604567ull
> +#define QSMMU_VTTB 0x000000000e4d0000ull
> +#define QSMMU_STR_TAB_BASE 0x000000000e179000ull
> +#define QSMMU_CD_GPA (QSMMU_STR_TAB_BASE - 0x40ull)
> +
> +
> +#define QSMMU_L0_PTE_VAL 0x000000000e4d1000ull
> +#define QSMMU_L1_PTE_VAL 0x000000000e4d2000ull
> +#define QSMMU_L2_PTE_VAL 0x000000000e4d3000ull
> +#define QSMMU_L3_PTE_VAL 0x000000000ecba000ull
> +
> +#define QSMMU_NON_LEAF_PTE_MASK 0x8000000000000003ull
> +#define QSMMU_LEAF_PTE_RO_MASK 0x04000000000007e3ull
> +#define QSMMU_LEAF_PTE_RW_MASK 0x0400000000000763ull
> +#define QSMMU_PTE_MASK 0x0000fffffffff000ull
> +
> +/*
> + * Address-space base offsets for test tables.
> + * - Non-Secure uses a fixed offset, keeping internal layout identical.
> + *
> + * Note: Future spaces (e.g. Secure/Realm/Root) are not implemented here.
> + * When needed, introduce new offsets and reuse the helpers below so
> + * relative layout stays identical across spaces.
> + */
> +#define QSMMU_SPACE_OFFS_NS 0x0000000040000000ull
> +
> +typedef enum QSMMUSecSID {
> + QSMMU_SEC_SID_NONSECURE = 0,
> + QSMMU_SEC_SID_SECURE = 1,
> + QSMMU_SEC_SID_REALM = 2,
> + QSMMU_SEC_SID_ROOT = 3,
> +} QSMMUSecSID;
> +
> +typedef enum QSMMUSpace {
> + QSMMU_SPACE_SECURE = 0,
> + QSMMU_SPACE_NONSECURE = 1,
> + QSMMU_SPACE_ROOT = 2,
> + QSMMU_SPACE_REALM = 3,
> +} QSMMUSpace;
> +
> +typedef enum QSMMUTransMode {
> + QSMMU_TM_S1_ONLY = 0,
> + QSMMU_TM_S2_ONLY = 1,
> + QSMMU_TM_NESTED = 2,
> +} QSMMUTransMode;
> +
> +typedef struct QSMMUTestConfig {
> + QSMMUTransMode trans_mode; /* Translation mode (S1, S2, Nested) */
> + QSMMUSecSID sec_sid; /* SEC_SID of test device */
> + uint64_t dma_iova; /* DMA IOVA address for testing */
> + uint32_t dma_len; /* DMA length for testing */
> + uint32_t expected_result; /* Expected DMA result for validation
> */
> +} QSMMUTestConfig;
> +
> +typedef struct QSMMUTestContext {
> + QTestState *qts; /* QTest state handle */
> + QPCIDevice *dev; /* PCI device handle */
> + QPCIBar bar; /* PCI BAR for MMIO access */
> + QSMMUTestConfig config; /* Test configuration */
> + uint64_t smmu_base; /* SMMU base address */
> + uint32_t trans_status; /* Translation configuration status */
> + uint32_t dma_result; /* DMA operation result */
> + uint32_t sid; /* Stream ID for the test */
> + QSMMUSpace tx_space; /* Cached transaction space */
> +} QSMMUTestContext;
> +
> +/* Convert SEC_SID to corresponding Security Space */
> +QSMMUSpace qsmmu_sec_sid_to_space(QSMMUSecSID sec_sid);
> +
> +/* Get base offset of the specific Security space */
> +uint64_t qsmmu_space_offset(QSMMUSpace sp);
> +
> +uint32_t qsmmu_build_dma_attrs(QSMMUSpace space);
> +
> +/*
> + * qsmmu_setup_and_enable_translation - Complete translation setup and enable
> + *
> + * @ctx: Test context containing configuration and device handles
> + *
> + * Returns: Translation status (0 = success, non-zero = error)
> + *
> + * This function performs the complete translation setup sequence:
> + * 1. Triggers configuration request via ITD_REG_TRANS_DBELL
> + * 2. Builds all required SMMU structures (STE, CD, page tables)
> + * 3. Programs SMMU registers for the appropriate security space
> + * 4. Reads back and returns configuration status
> + */
> +uint32_t qsmmu_setup_and_enable_translation(QSMMUTestContext *ctx);
> +
> +/*
> + * qsmmu_build_translation - Build SMMU translation structures
> + *
> + * @qts: QTest state handle
> + * @mode: Translation mode (S1_ONLY, S2_ONLY, NESTED)
> + * @tx_space: Transaction security space
> + * @sid: Stream ID
> + *
> + * Returns: Build status (0 = success, non-zero = error)
> + *
> + * Constructs all necessary SMMU translation structures in guest memory:
> + * - Stream Table Entry (STE) for the given SID
> + * - Context Descriptor (CD) if Stage 1 translation is involved
> + * - Complete page table hierarchy based on translation mode
> + *
> + * The structures are written to security-space-specific memory regions.
> + */
> +uint32_t qsmmu_build_translation(QTestState *qts, QSMMUTransMode mode,
> + QSMMUSpace tx_space, uint32_t sid);
> +
> +/*
> + * qsmmu_bank_base - Get SMMU control bank base address
> + *
> + * @base: SMMU base address
> + * @sp: Security space
> + *
> + * Returns: Bank base address for the given security space
> + *
> + * Maps security space to the corresponding SMMU control register bank.
> + * Currently only Non-Secure bank is supported.
> + */
> +uint64_t qsmmu_bank_base(uint64_t base, QSMMUSpace sp);
> +
> +/*
> + * qsmmu_program_bank - Program SMMU control bank registers
> + *
> + * @qts: QTest state handle
> + * @bank_base: SMMU bank base address
> + * @sp: Security space
> + *
> + * Programs a specific SMMU control bank with minimal configuration:
> + * - Global Bypass Attribute (GBPA)
> + * - Control registers (CR0, CR1)
> + * - Command queue (base, producer, consumer)
> + * - Event queue (base, producer, consumer)
> + * - Stream table configuration (base, format)
> + *
> + * Addresses are adjusted based on security space offset.
> + */
> +void qsmmu_program_bank(QTestState *qts, uint64_t bank_base, QSMMUSpace sp);
> +
> +/*
> + * qsmmu_program_regs - Program all required SMMU register banks
> + *
> + * @qts: QTest state handle
> + * @smmu_base: SMMU base address
> + * @space: Target security space
> + *
> + * Programs SMMU registers for the requested security space which is called
> in
> + * qsmmu_setup_and_enable_translation. Always programs Non-Secure bank first,
> + * then the target space if different.
> + */
> +void qsmmu_program_regs(QTestState *qts, uint64_t smmu_base, QSMMUSpace
> space);
> +
> +uint32_t qsmmu_trigger_dma(QSMMUTestContext *ctx);
> +
> +/*
> + * qsmmu_cleanup_translation - Clean up translation configuration
> + *
> + * @ctx: Test context containing configuration and device handles
> + *
> + * Clears all translation structures and invalidates SMMU caches:
> + * - Clears STE and CD entries
> + * - Issues SMMU invalidation commands (CFGI_STE, CFGI_CD, TLBI_NSNH_ALL)
> + */
> +void qsmmu_cleanup_translation(QSMMUTestContext *ctx);
> +
> +/* qsmmu_expected_dma_result - Calculate expected DMA result */
> +uint32_t qsmmu_expected_dma_result(QSMMUTestContext *ctx);
> +
> +/*
> + * qsmmu_validate_test_result - Validate actual VS expected test result
> + *
> + * @ctx: Test context containing actual and expected results
> + *
> + * Returns: true if test passed (actual == expected), false otherwise
> + *
> + * Compares the actual DMA result with the expected result and logs
> + * the comparison for debugging purposes.
> + */
> +bool qsmmu_validate_test_result(QSMMUTestContext *ctx);
> +
> +/*
> + * qsmmu_setup_translation_tables - Setup complete SMMU page table hierarchy
> + *
> + * @qts: QTest state handle
> + * @iova: Input Virtual Address or IPA to translate
> + * @space: Security space (NONSECURE, SECURE, REALM, ROOT)
> + * @is_cd: Whether translating CD address (vs regular IOVA)
> + * @mode: Translation mode (S1_ONLY, S2_ONLY, NESTED)
> + *
> + * This function builds the complete page table structure for translating
> + * the given IOVA through the SMMU. The structure varies based on mode:
> + *
> + * - S1_ONLY: Single Stage 1 walk (IOVA -> PA)
> + * - S2_ONLY: Single Stage 2 walk (IPA -> PA)
> + * - NESTED: Stage 1 walk (IOVA -> IPA) with nested S2 walks for each
> + * S1 table access, plus final S2 walk for the result IPA
> + *
> + * For nested mode, this creates a complex hierarchy:
> + * - 4 Stage 1 levels (L0-L3), each requiring a 4-level Stage 2 walk
> + * - 1 final Stage 2 walk for the resulting IPA
> + *
> + * The function writes all necessary Page Table Entries (PTEs) to guest
> + * memory using qtest_writeq(), setting up the complete translation path
> + * that the SMMU hardware will traverse during DMA operations.
> + */
> +void qsmmu_setup_translation_tables(QTestState *qts,
> + uint64_t iova,
> + QSMMUSpace space,
> + bool is_cd,
> + QSMMUTransMode mode);
> +
> +/* High-level test execution functions */
> +
> +void qsmmu_single_translation(QSMMUTestContext *ctx);
> +void qsmmu_translation_batch(const QSMMUTestConfig *configs, size_t count,
> + QTestState *qts, QPCIDevice *dev,
> + QPCIBar bar, uint64_t smmu_base);
> +
> +#endif /* QTEST_LIBQOS_SMMUV3_H */
--
Alex Bennée
Virtualisation Tech Lead @ Linaro