On Thursday, October 17, 2019, Michael Rolnik <mrol...@gmail.com> wrote:
> On Thu, Oct 17, 2019 at 11:17 PM Aleksandar Markovic > <aleksandar.m.m...@gmail.com> wrote: > >> > >> > >> >> +static TCGv cpu_Cf; > >> >> +static TCGv cpu_Zf; > >> >> +static TCGv cpu_Nf; > >> >> +static TCGv cpu_Vf; > >> >> +static TCGv cpu_Sf; > >> >> +static TCGv cpu_Hf; > >> >> +static TCGv cpu_Tf; > >> >> +static TCGv cpu_If; > >> >> + > >> > > >> > > >> > Hello, Michael, > >> > > >> > Is there any particular reason or motivation beyond modelling status > register flags as TCGv variables? > >> > >> > >> > >> I think it's easier this way as I don't need to convert flag values to > >> bits or bits to flag values. > > > > > > Ok. But, how do you map 0/1 flag value to the value of a TCGv variable > and vice versa? In other words, what value or values (out of 2^32 vales) of > a TCGv variable mean the flag is 1? And the same question for 0. > > > > Is 0110000111000010100 one or zero? > > > > Besides, in such arrangement, how do you display the 8-bit status > register in gdb, if at all? > > each flag register is either 0 or 1,.... > > Michael, If this is true, why is there a special handling of two flags in the following code: static inline uint8_t cpu_get_sreg(CPUAVRState *env) { uint8_t sreg; sreg = (env->sregC & 0x01) << 0 | (env->sregZ == 0 ? 1 : 0) << 1 | (env->sregN) << 2 | (env->sregV) << 3 | (env->sregS) << 4 | (env->sregH) << 5 | (env->sregT) << 6 | (env->sregI) << 7; return sreg; } static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg) { env->sregC = (sreg >> 0) & 0x01; env->sregZ = (sreg >> 1) & 0x01 ? 0 : 1; env->sregN = (sreg >> 2) & 0x01; env->sregV = (sreg >> 3) & 0x01; env->sregS = (sreg >> 4) & 0x01; env->sregH = (sreg >> 5) & 0x01; env->sregT = (sreg >> 6) & 0x01; env->sregI = (sreg >> 7) & 0x01; } ? Thanks, A. > > they are calculated here > 1. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/translate.c#L146-L148 > 2. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/translate.c#L166 > 3. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/translate.c#L185-L187 > 4. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/translate.c#L205 > 5. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/translate.c#L214-L215 > 6. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/translate.c#L222-L223 > The COU itself never uses SREG at all, only the flags. > > As for the GDB it's get assembled/disassembled here > 1. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/cpu.h#L219-L243 > 2. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/gdbstub.c#L35-L37 > 3. https://github.com/michaelrolnik/qemu-avr/blob/ > avr-v32/target/avr/gdbstub.c#L66-L68 > > > > > A. > > > >> > >> > > >> > A. > >> > > >> > > >> > > >> >> > >> >> +static TCGv cpu_rampD; > >> >> +static TCGv cpu_rampX; > >> >> +static TCGv cpu_rampY; > >> >> +static TCGv cpu_rampZ; > >> >> + > >> >> +static TCGv cpu_r[NO_CPU_REGISTERS]; > >> >> +static TCGv cpu_eind; > >> >> +static TCGv cpu_sp; > >> >> + > >> >> +static TCGv cpu_skip; > >> >> + > >> >> +static const char reg_names[NO_CPU_REGISTERS][8] = { > >> >> + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", > >> >> + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", > >> >> + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", > >> >> + "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", > >> >> +}; > >> >> +#define REG(x) (cpu_r[x]) > >> >> + > >> >> +enum { > >> >> + DISAS_EXIT = DISAS_TARGET_0, /* We want return to the cpu > main loop. */ > >> >> + DISAS_LOOKUP = DISAS_TARGET_1, /* We have a variable condition > exit. */ > >> >> + DISAS_CHAIN = DISAS_TARGET_2, /* We have a single condition > exit. */ > >> >> +}; > >> >> + > >> >> +typedef struct DisasContext DisasContext; > >> >> + > >> >> +/* This is the state at translation time. */ > >> >> +struct DisasContext { > >> >> + TranslationBlock *tb; > >> >> + > >> >> + CPUAVRState *env; > >> >> + CPUState *cs; > >> >> + > >> >> + target_long npc; > >> >> + uint32_t opcode; > >> >> + > >> >> + /* Routine used to access memory */ > >> >> + int memidx; > >> >> + int bstate; > >> >> + int singlestep; > >> >> + > >> >> + TCGv skip_var0; > >> >> + TCGv skip_var1; > >> >> + TCGCond skip_cond; > >> >> + bool free_skip_var0; > >> >> +}; > >> >> + > >> >> +static int to_A(DisasContext *ctx, int indx) { return 16 + (indx % > 16); } > >> >> +static int to_B(DisasContext *ctx, int indx) { return 16 + (indx % > 8); } > >> >> +static int to_C(DisasContext *ctx, int indx) { return 24 + (indx % > 4) * 2; } > >> >> +static int to_D(DisasContext *ctx, int indx) { return (indx % 16) * > 2; } > >> >> + > >> >> +static uint16_t next_word(DisasContext *ctx) > >> >> +{ > >> >> + return cpu_lduw_code(ctx->env, ctx->npc++ * 2); > >> >> +} > >> >> + > >> >> +static int append_16(DisasContext *ctx, int x) > >> >> +{ > >> >> + return x << 16 | next_word(ctx); > >> >> +} > >> >> + > >> >> + > >> >> +static bool avr_have_feature(DisasContext *ctx, int feature) > >> >> +{ > >> >> + if (!avr_feature(ctx->env, feature)) { > >> >> + gen_helper_unsupported(cpu_env); > >> >> + ctx->bstate = DISAS_NORETURN; > >> >> + return false; > >> >> + } > >> >> + return true; > >> >> +} > >> >> + > >> >> +static bool decode_insn(DisasContext *ctx, uint16_t insn); > >> >> +#include "decode_insn.inc.c" > >> >> + > >> >> -- > >> >> 2.17.2 (Apple Git-113) > >> >> > >> > >> > >> -- > >> Best Regards, > >> Michael Rolnik > > > > -- > Best Regards, > Michael Rolnik >