On Thursday, October 17, 2019, Michael Rolnik <mrol...@gmail.com> wrote:

> On Thu, Oct 17, 2019 at 11:17 PM Aleksandar Markovic
> <aleksandar.m.m...@gmail.com> wrote:
> >>
> >>
> >> >> +static TCGv cpu_Cf;
> >> >> +static TCGv cpu_Zf;
> >> >> +static TCGv cpu_Nf;
> >> >> +static TCGv cpu_Vf;
> >> >> +static TCGv cpu_Sf;
> >> >> +static TCGv cpu_Hf;
> >> >> +static TCGv cpu_Tf;
> >> >> +static TCGv cpu_If;
> >> >> +
> >> >
> >> >
> >> > Hello, Michael,
> >> >
> >> > Is there any particular reason or motivation beyond modelling status
> register flags as TCGv variables?
> >>
> >>
> >>
> >> I think it's easier this way as I don't need to convert flag values to
> >> bits or bits to flag values.
> >
> >
> > Ok. But, how do you map 0/1 flag value to the value of a TCGv variable
> and vice versa? In other words, what value or values (out of 2^32 vales) of
> a TCGv variable mean the flag is 1? And the same question for 0.
> >
> > Is 0110000111000010100 one or zero?
> >
> > Besides, in such arrangement, how do you display the 8-bit status
> register in gdb, if at all?
>
> each flag register is either 0 or 1,....


>
>
Michael,

If this is true, why is there a special handling of two flags in the
following code:


static inline uint8_t cpu_get_sreg(CPUAVRState *env)
{
uint8_t sreg;
sreg = (env->sregC & 0x01) << 0
| (env->sregZ == 0 ? 1 : 0) << 1
| (env->sregN) << 2
| (env->sregV) << 3
| (env->sregS) << 4
| (env->sregH) << 5
| (env->sregT) << 6
| (env->sregI) << 7;
return sreg;
}
static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
{
env->sregC = (sreg >> 0) & 0x01;
env->sregZ = (sreg >> 1) & 0x01 ? 0 : 1;
env->sregN = (sreg >> 2) & 0x01;
env->sregV = (sreg >> 3) & 0x01;
env->sregS = (sreg >> 4) & 0x01;
env->sregH = (sreg >> 5) & 0x01;
env->sregT = (sreg >> 6) & 0x01;
env->sregI = (sreg >> 7) & 0x01;
}
 ?


Thanks,
A.

>
>  they are calculated here
> 1. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/translate.c#L146-L148
> 2. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/translate.c#L166
> 3. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/translate.c#L185-L187
> 4. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/translate.c#L205
> 5. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/translate.c#L214-L215
> 6. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/translate.c#L222-L223
> The COU itself never uses SREG at all, only the flags.
>
> As for the GDB it's get assembled/disassembled here
> 1. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/cpu.h#L219-L243
> 2. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/gdbstub.c#L35-L37
> 3. https://github.com/michaelrolnik/qemu-avr/blob/
> avr-v32/target/avr/gdbstub.c#L66-L68
>
> >
> > A.
> >
> >>
> >> >
> >> > A.
> >> >
> >> >
> >> >
> >> >>
> >> >> +static TCGv cpu_rampD;
> >> >> +static TCGv cpu_rampX;
> >> >> +static TCGv cpu_rampY;
> >> >> +static TCGv cpu_rampZ;
> >> >> +
> >> >> +static TCGv cpu_r[NO_CPU_REGISTERS];
> >> >> +static TCGv cpu_eind;
> >> >> +static TCGv cpu_sp;
> >> >> +
> >> >> +static TCGv cpu_skip;
> >> >> +
> >> >> +static const char reg_names[NO_CPU_REGISTERS][8] = {
> >> >> +    "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
> >> >> +    "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
> >> >> +    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
> >> >> +    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
> >> >> +};
> >> >> +#define REG(x) (cpu_r[x])
> >> >> +
> >> >> +enum {
> >> >> +    DISAS_EXIT   = DISAS_TARGET_0,  /* We want return to the cpu
> main loop.  */
> >> >> +    DISAS_LOOKUP = DISAS_TARGET_1,  /* We have a variable condition
> exit.  */
> >> >> +    DISAS_CHAIN  = DISAS_TARGET_2,  /* We have a single condition
> exit.  */
> >> >> +};
> >> >> +
> >> >> +typedef struct DisasContext DisasContext;
> >> >> +
> >> >> +/* This is the state at translation time. */
> >> >> +struct DisasContext {
> >> >> +    TranslationBlock *tb;
> >> >> +
> >> >> +    CPUAVRState *env;
> >> >> +    CPUState *cs;
> >> >> +
> >> >> +    target_long npc;
> >> >> +    uint32_t opcode;
> >> >> +
> >> >> +    /* Routine used to access memory */
> >> >> +    int memidx;
> >> >> +    int bstate;
> >> >> +    int singlestep;
> >> >> +
> >> >> +    TCGv skip_var0;
> >> >> +    TCGv skip_var1;
> >> >> +    TCGCond skip_cond;
> >> >> +    bool free_skip_var0;
> >> >> +};
> >> >> +
> >> >> +static int to_A(DisasContext *ctx, int indx) { return 16 + (indx %
> 16); }
> >> >> +static int to_B(DisasContext *ctx, int indx) { return 16 + (indx %
> 8); }
> >> >> +static int to_C(DisasContext *ctx, int indx) { return 24 + (indx %
> 4) * 2; }
> >> >> +static int to_D(DisasContext *ctx, int indx) { return (indx % 16) *
> 2; }
> >> >> +
> >> >> +static uint16_t next_word(DisasContext *ctx)
> >> >> +{
> >> >> +    return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
> >> >> +}
> >> >> +
> >> >> +static int append_16(DisasContext *ctx, int x)
> >> >> +{
> >> >> +    return x << 16 | next_word(ctx);
> >> >> +}
> >> >> +
> >> >> +
> >> >> +static bool avr_have_feature(DisasContext *ctx, int feature)
> >> >> +{
> >> >> +    if (!avr_feature(ctx->env, feature)) {
> >> >> +        gen_helper_unsupported(cpu_env);
> >> >> +        ctx->bstate = DISAS_NORETURN;
> >> >> +        return false;
> >> >> +    }
> >> >> +    return true;
> >> >> +}
> >> >> +
> >> >> +static bool decode_insn(DisasContext *ctx, uint16_t insn);
> >> >> +#include "decode_insn.inc.c"
> >> >> +
> >> >> --
> >> >> 2.17.2 (Apple Git-113)
> >> >>
> >>
> >>
> >> --
> >> Best Regards,
> >> Michael Rolnik
>
>
>
> --
> Best Regards,
> Michael Rolnik
>

Reply via email to