This is a generic fuzzer designed to fuzz a virtual device's MemoryRegions, as long as they exist within the Memory or Port IO (if it exists) AddressSpaces. The fuzzer's input is interpreted into a sequence of qtest commands (outb, readw, etc). The interpreted commands are separated by a magic seaparator, which should be easy for the fuzzer to guess. Without ASan, the separator can be specified as a "dictionary value" using the -dict argument (see libFuzzer documentation).
Signed-off-by: Alexander Bulekov <alx...@bu.edu> --- tests/qtest/fuzz/Makefile.include | 1 + tests/qtest/fuzz/general_fuzz.c | 494 ++++++++++++++++++++++++++++++ 2 files changed, 495 insertions(+) create mode 100644 tests/qtest/fuzz/general_fuzz.c diff --git a/tests/qtest/fuzz/Makefile.include b/tests/qtest/fuzz/Makefile.include index 5bde793bf2..854322efb6 100644 --- a/tests/qtest/fuzz/Makefile.include +++ b/tests/qtest/fuzz/Makefile.include @@ -11,6 +11,7 @@ fuzz-obj-y += tests/qtest/fuzz/qtest_wrappers.o fuzz-obj-$(CONFIG_PCI_I440FX) += tests/qtest/fuzz/i440fx_fuzz.o fuzz-obj-$(CONFIG_VIRTIO_NET) += tests/qtest/fuzz/virtio_net_fuzz.o fuzz-obj-$(CONFIG_SCSI) += tests/qtest/fuzz/virtio_scsi_fuzz.o +fuzz-obj-y += tests/qtest/fuzz/general_fuzz.o FUZZ_CFLAGS += -I$(SRC_PATH)/tests -I$(SRC_PATH)/tests/qtest diff --git a/tests/qtest/fuzz/general_fuzz.c b/tests/qtest/fuzz/general_fuzz.c new file mode 100644 index 0000000000..01bcb029b1 --- /dev/null +++ b/tests/qtest/fuzz/general_fuzz.c @@ -0,0 +1,494 @@ +/* + * General Virtual-Device Fuzzing Target + * + * Copyright Red Hat Inc., 2020 + * + * Authors: + * Alexander Bulekov <alx...@bu.edu> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#include "qemu/osdep.h" + +#include <wordexp.h> + +#include "cpu.h" +#include "tests/qtest/libqtest.h" +#include "fuzz.h" +#include "fork_fuzz.h" +#include "exec/address-spaces.h" +#include "string.h" +#include "exec/memory.h" +#include "exec/ramblock.h" +#include "exec/address-spaces.h" +#include "hw/qdev-core.h" + +/* + * SEPARATOR is used to separate "operations" in the fuzz input + */ +#define SEPARATOR "FUZZ" + +enum cmds{ + OP_IN, + OP_OUT, + OP_READ, + OP_WRITE, + OP_CLOCK_STEP, +}; + +#define DEFAULT_TIMEOUT_US 100000 +#define USEC_IN_SEC 100000000 + +typedef struct { + size_t addr; + size_t len; /* The number of bytes until the end of the I/O region */ +} address_range; + +static useconds_t timeout = 100000; +/* + * List of memory regions that are children of QOM objects specified by the + * user for fuzzing. + */ +static GPtrArray *fuzzable_memoryregions; +/* + * Here we want to convert a fuzzer-provided [io-region-index, offset] to + * a physical address. To do this, we iterate over all of the matched + * MemoryRegions. Check whether each region exists within the particular io + * space. Return the absolute address of the offset within the index'th region + * that is a subregion of the io_space and the distance until the end of the + * memory region. + */ +static bool get_io_address(address_range *result, + MemoryRegion *io_space, + uint8_t index, + uint32_t offset) { + MemoryRegion *mr, *root; + index = index % fuzzable_memoryregions->len; + int candidate_regions = 0; + int i = 0; + int ind = index; + size_t abs_addr; + AddressSpace *as = (io_space == get_system_memory()) ? &address_space_memory : &address_space_io; + + while (ind >= 0 && fuzzable_memoryregions->len) { + *result = (address_range){0, 0}; + mr = g_ptr_array_index(fuzzable_memoryregions, i); + if (mr->enabled) { + abs_addr = mr->addr; + for (root = mr; root->container; ) { + root = root->container; + abs_addr += root->addr; + } + /* + * Only consider the region if it is rooted at the io_space we want + */ + if (root == io_space) { + hwaddr xlat, len; + if(address_space_translate(as, abs_addr, &xlat, &len, true, MEMTXATTRS_UNSPECIFIED) == mr){ + ind--; + candidate_regions++; + result->addr = abs_addr; + if(mr->size){ + result->addr += (offset % mr->size); + } + result->len = mr->size-(result->addr-abs_addr); + } + } + } + ++i; + /* Loop around */ + if (i == fuzzable_memoryregions->len) { + /* No enabled regions in our io_space? */ + if (candidate_regions == 0) { + break; + } + i = 0; + } + } + return candidate_regions != 0; +} +static bool get_pio_address(address_range *result, + uint8_t index, uint16_t offset) +{ + /* + * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result + * can contain an addr that extends past the PIO space. When we pass this + * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end + * up fuzzing a completely different MemoryRegion/Device. Therefore, check + * that the address here is within the PIO space limits. + */ + + bool success = get_io_address(result, get_system_io(), index, offset); + return success && result->addr <= 0xFFFF; +} +static bool get_mmio_address(address_range *result, + uint8_t index, uint32_t offset) +{ + return get_io_address(result, get_system_memory(), index, offset); +} + +static void op_in(QTestState *s, const unsigned char * data, size_t len) +{ + enum Sizes {Byte, Word, Long, end_sizes}; + struct { + uint8_t size; + uint8_t base; + uint16_t offset; + } a; + address_range abs; + + if (len < sizeof(a)) { + return; + } + memcpy(&a, data, sizeof(a)); + if (get_pio_address(&abs, a.base, a.offset) == 0) { + return; + } + + switch (a.size %= end_sizes) { + case Byte: + qtest_inb(s, abs.addr); + break; + case Word: + if (abs.len >= 2) { + qtest_inw(s, abs.addr); + } + break; + case Long: + if (abs.len >= 4) { + qtest_inl(s, abs.addr); + } + break; + } +} + +static void op_out(QTestState *s, const unsigned char * data, size_t len) +{ + enum Sizes {Byte, Word, Long, end_sizes}; + struct { + uint8_t size; + uint8_t base; + uint16_t offset; + uint32_t value; + } a; + address_range abs; + + if (len < sizeof(a)) { + return; + } + memcpy(&a, data, sizeof(a)); + + if (get_pio_address(&abs, a.base, a.offset) == 0) { + return; + } + + switch (a.size %= end_sizes) { + case Byte: + qtest_outb(s, abs.addr, a.value & 0xFF); + break; + case Word: + if (abs.len >= 2) { + qtest_outw(s, abs.addr, a.value & 0xFFFF); + } + break; + case Long: + if (abs.len >= 4) { + qtest_outl(s, abs.addr, a.value); + } + break; + } +} + +static void op_read(QTestState *s, const unsigned char * data, size_t len) +{ + enum Sizes {Byte, Word, Long, Quad, end_sizes}; + struct { + uint8_t size; + uint8_t base; + uint32_t offset; + } a; + address_range abs; + + if (len < sizeof(a)) { + return; + } + memcpy(&a, data, sizeof(a)); + + if (get_mmio_address(&abs, a.base, a.offset) == 0) { + return; + } + + switch (a.size %= end_sizes) { + case Byte: + qtest_readb(s, abs.addr); + break; + case Word: + if (abs.len >= 2) { + qtest_readw(s, abs.addr); + } + break; + case Long: + if (abs.len >= 4) { + qtest_readl(s, abs.addr); + } + break; + case Quad: + if (abs.len >= 8) { + qtest_readq(s, abs.addr); + } + break; + } +} + +static void op_write(QTestState *s, const unsigned char * data, size_t len) +{ + enum Sizes {Byte, Word, Long, Quad, end_sizes}; + struct { + uint8_t size; + uint8_t base; + uint32_t offset; + uint64_t value; + } a; + address_range abs; + + if (len < sizeof(a)) { + return; + } + memcpy(&a, data, sizeof(a)); + + if (get_mmio_address(&abs, a.base, a.offset) == 0) { + return; + } + + switch (a.size %= end_sizes) { + case Byte: + qtest_writeb(s, abs.addr, a.value & 0xFF); + break; + case Word: + if (abs.len >= 2) { + qtest_writew(s, abs.addr, a.value & 0xFFFF); + } + break; + case Long: + if (abs.len >= 4) { + qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF); + } + break; + case Quad: + if (abs.len >= 8) { + qtest_writeq(s, abs.addr, a.value); + } + break; + } +} +static void op_clock_step(QTestState *s, const unsigned char *data, size_t len) +{ + qtest_clock_step_next(s); +} + +static void handle_timeout(int sig) +{ + if (getenv("QTEST_LOG")) { + fprintf(stderr, "[Timeout]\n"); + fflush(stderr); + } + _Exit(0); +} + +/* + * Here, we interpret random bytes from the fuzzer, as a sequence of commands. + * Our commands are variable-width, so we use a separator, SEPARATOR, to specify + * the boundaries between commands. This is just a random 32-bit value, which + * is easily identified by libfuzzer+AddressSanitizer, as long as we use + * memmem. It can also be included in the fuzzer's dictionary. More details + * here: + * https://github.com/google/fuzzing/blob/master/docs/split-inputs.md + * + * As a result, the stream of bytes is converted into a sequence of commands. + * In a simplified example where SEPARATOR is 0xFF: + * 00 01 02 FF 03 04 05 06 FF 01 FF ... + * becomes this sequence of commands: + * 00 01 02 -> op00 (0102) -> in (0102, 2) + * 03 04 05 06 -> op03 (040506) -> write (040506, 3) + * 01 -> op01 (-,0) -> out (-,0) + * ... + * + * Note here that it is the job of the individual opcode functions to check + * that enough data was provided. I.e. in the last command out (,0), out needs + * to check that there is not enough data provided to select an address/value + * for the operation. + */ +static void general_fuzz(QTestState *s, const unsigned char *Data, size_t Size) +{ + void (*ops[]) (QTestState *s, const unsigned char* , size_t) = { + [OP_IN] = op_in, + [OP_OUT] = op_out, + [OP_READ] = op_read, + [OP_WRITE] = op_write, + [OP_CLOCK_STEP] = op_clock_step, + }; + const unsigned char *cmd = Data; + const unsigned char *nextcmd; + size_t cmd_len; + uint8_t op; + + if (fork() == 0) { + /* + * Sometimes the fuzzer will find inputs that take quite a long time to + * process. Often times, these inputs do not result in new coverage. + * Even if these inputs might be interesting, they can slow down the + * fuzzer, overall. Set a timeout to avoid hurting performance, too much + */ + if (timeout) { + struct sigaction sact; + struct itimerval timer; + + sigemptyset(&sact.sa_mask); + sact.sa_flags = SA_NODEFER; + sact.sa_handler = handle_timeout; + sigaction(SIGALRM, &sact, NULL); + + memset(&timer, 0, sizeof(timer)); + timer.it_value.tv_sec = timeout / USEC_IN_SEC; + timer.it_value.tv_usec = timeout % USEC_IN_SEC; + setitimer(ITIMER_VIRTUAL, &timer, NULL); + } + + while (cmd && Size) { + /* Get the length until the next command or end of input */ + nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR)); + cmd_len = nextcmd ? nextcmd - cmd : Size; + + if (cmd_len > 0) { + /* Interpret the first byte of the command as an opcode */ + op = *cmd % (sizeof(ops) / sizeof((ops)[0])); + ops[op](s, cmd + 1, cmd_len - 1); + + /* Run the main loop */ + flush_events(s); + } + /* Advance to the next command */ + cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd; + Size = Size - (cmd_len + sizeof(SEPARATOR) - 1); + } + _Exit(0); + } else { + flush_events(s); + wait(0); + } +} + +static void usage(void) +{ + printf("Please specify the following environment variables:\n"); + printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n"); + printf("QEMU_FUZZ_OBJECTS= " + "a space separated list of QOM type names for objects to fuzz\n"); + printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). " + "0 to disable. %d by default\n", timeout); + exit(0); +} + +static int locate_fuzz_memory_regions(Object *child, void *opaque) +{ + const char *name; + MemoryRegion *mr; + if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) { + mr = MEMORY_REGION(child); + if ((memory_region_is_ram(mr) || + memory_region_is_ram_device(mr) || + memory_region_is_rom(mr) || + memory_region_is_romd(mr)) == false) { + name = object_get_canonical_path_component(child); + /* + * We don't want duplicate pointers to the same MemoryRegion, so + * try to remove copies of the pointer, before adding it. + */ + g_ptr_array_remove_fast(fuzzable_memoryregions, mr); + g_ptr_array_add(fuzzable_memoryregions, mr); + } + } + return 0; +} +static int locate_fuzz_objects(Object *child, void *opaque) +{ + char *pattern = opaque; + if (g_pattern_match_simple(pattern, object_get_typename(child))) { + /* Find and save ptrs to any child MemoryRegions */ + object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL); + } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) { + if (g_pattern_match_simple(pattern, + object_get_canonical_path_component(child))) { + MemoryRegion *mr; + mr = MEMORY_REGION(child); + if ((memory_region_is_ram(mr) || + memory_region_is_ram_device(mr) || + memory_region_is_rom(mr) || + memory_region_is_romd(mr)) == false) { + g_ptr_array_remove_fast(fuzzable_memoryregions, mr); + g_ptr_array_add(fuzzable_memoryregions, mr); + } + } + } + return 0; +} + +static void general_pre_fuzz(QTestState *s) +{ + if (!getenv("QEMU_FUZZ_OBJECTS")) { + usage(); + } + if (getenv("QEMU_FUZZ_TIMEOUT")) { + timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0); + } + + fuzzable_memoryregions = g_ptr_array_new(); + char **result = g_strsplit (getenv("QEMU_FUZZ_OBJECTS"), " ", -1); + for (int i = 0; result[i] != NULL; i++) { + printf("Matching objects by name %s\n", result[i]); + object_child_foreach_recursive(qdev_get_machine(), + locate_fuzz_objects, + result[i]); + } + g_strfreev(result); + printf("This process will try to fuzz the following MemoryRegions:\n"); + for (int i = 0; i < fuzzable_memoryregions->len; i++) { + MemoryRegion *mr; + mr = g_ptr_array_index(fuzzable_memoryregions, i); + printf(" * %s (size %lx)\n", + object_get_canonical_path_component(&(mr->parent_obj)), + mr->addr); + } + + if(!fuzzable_memoryregions->len){ + printf("No fuzzable memory regions found...\n"); + exit(0); + } + + counter_shm_init(); +} +static GString *general_fuzz_cmdline(FuzzTarget *t) +{ + GString *cmd_line = g_string_new(TARGET_NAME); + if (!getenv("QEMU_FUZZ_ARGS")) { + usage(); + } + g_string_append_printf(cmd_line, " -display none \ + -machine accel=qtest, \ + -m 64 %s ", getenv("QEMU_FUZZ_ARGS")); + return cmd_line; +} + +static void register_general_fuzz_targets(void) +{ + fuzz_add_target(&(FuzzTarget){ + .name = "general-fuzz", + .description = "Fuzz based on any qemu command-line args. ", + .get_init_cmdline = general_fuzz_cmdline, + .pre_fuzz = general_pre_fuzz, + .fuzz = general_fuzz}); +} + +fuzz_target_init(register_general_fuzz_targets); -- 2.27.0