I want to calculate a statistic on a number of subgroups of a dataframe, then put the results into a dataframe. (What SAS PROC MEANS does, I think, though it's been years since I used it.)
This is possible using by(), but it seems cumbersome and fragile. Is there a more straightforward way than this? Here's a simple example showing my current strategy: > dataset <- data.frame(gp1 = rep(1:2, c(4,4)), gp2 = rep(1:4, c(2,2,2,2)), value = rnorm(8)) > dataset gp1 gp2 value 1 1 1 0.9493232 2 1 1 -0.0474712 3 1 2 -0.6808021 4 1 2 1.9894999 5 2 3 2.0154786 6 2 3 0.4333056 7 2 4 -0.4746228 8 2 4 0.6017522 > > handleonegroup <- function(subset) data.frame(gp1 = subset$gp1[1], + gp2 = subset$gp2[1], statistic = mean(subset$value)) > > bylist <- by(dataset, list(dataset$gp1, dataset$gp2), handleonegroup) > > result <- do.call('rbind', bylist) > result gp1 gp2 statistic 1 1 1 0.45092598 11 1 2 0.65434890 12 2 3 1.22439210 13 2 4 0.06356469 tapply() is inappropriate because I don't have all possible combinations of gp1 and gp2 values, only some of them: > tapply(dataset$value, list(dataset$gp1, dataset$gp2), mean) 1 2 3 4 1 0.450926 0.6543489 NA NA 2 NA NA 1.224392 0.06356469 In the real case, I only have a very sparse subset of all the combinations, and tapply() and by() both die for lack of memory. Any suggestions on how to do what I want, without using SAS? Duncan Murdoch ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel