On Windows > Tab quantile kuantile quantile kuantile qsort 100 0.003 0.003 0.000 0.001 0.000 1000 0.000 0.000 0.002 0.000 0.000 10000 0.002 0.004 0.001 0.004 0.000 1e+05 0.008 0.006 0.016 0.010 0.018 1e+06 0.092 0.113 0.137 0.140 0.186 1e+07 0.920 0.685 1.386 0.992 2.274
so the comparison is far less favourable to kuantile. I remain unconvinced that such small differences are worth the time spend discussing them. On Tue, 11 Apr 2006, roger koenker wrote: > I've recently folded a new version of the Floyd-Rivest quantile > algorithm > for quantiles into my quantreg package. So it is easily available for > comparative testing. On my G5 running last friday's R-devel, I get: > > > Median Only 5 Quantiles > n quantile kuantile quantile kuantile qsort > 100 0.003 0.003 0.006 0.004 0.002 > 1000 0.002 0.002 0.002 0.002 0.002 > 10000 0.005 0.003 0.008 0.003 0.001 > 1e+05 0.022 0.010 0.035 0.012 0.017 > 1e+06 0.181 0.117 0.308 0.138 0.200 > 1e+07 1.853 0.762 3.180 1.003 2.287 > > > # Small timing experiment to compare kuantile and quantile > > require(quantreg) > set.seed(1446) > > ns <- 10^(2:7) > R <- 10 > T <- array(NA,c(R,length(ns),5)) > eps <- 20 * .Machine$double.eps > for(j in 1:length(ns)){ > for(i in 1:R){ > y <- rnorm(ns[j]) > T[i,j,1] <- system.time(qy <- quantile(y,.5))[1] > T[i,j,2] <- system.time(ky <- kuantile(y,.5))[1] > stopifnot(abs(qy - ky) < eps) > T[i,j,3] <- system.time(qy <- quantile(y))[1] > T[i,j,4] <- system.time(ky <- kuantile(y))[1] > stopifnot(abs(qy - ky) < eps) > T[i,j,5] <- system.time(sort(y,method="quick"))[1] > } > } > > Tab <- apply(T,2:3,mean) > dimnames(Tab) <- list(paste(ns),c(rep(c("quantile","kuantile"), > 2),"qsort")) > > url: www.econ.uiuc.edu/~roger Roger Koenker > email [EMAIL PROTECTED] Department of Economics > vox: 217-333-4558 University of Illinois > fax: 217-244-6678 Champaign, IL 61820 > > ______________________________________________ > R-devel@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel > > -- Brian D. Ripley, [EMAIL PROTECTED] Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272866 (PA) Oxford OX1 3TG, UK Fax: +44 1865 272595 ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel