Hello, In certain cases fligner.test() returns NaN statistic and NA p-value. The issue happens when, after centering with the median, all absolute values become constant, which ten leads to identical ranks.
Below are a few examples: # 2 groups, 2 values each # issue is caused by residual values after centering (-0.5, 0.5, -0.5, 0.5) # then, after taking the absolute value, all the ranks become identical. > fligner.test(c(2,3,4,5), gl(2,2)) Fligner-Killeen test of homogeneity of variances data: c(2, 3, 4, 5) and gl(2, 2) Fligner-Killeen:med chi-squared = NaN, df = 1, p-value = NA # similar situation with more observations and 3 groups > fligner.test(c(2,3,2,3,4,4,5,5,8,9,9,8), gl(3,4)) Fligner-Killeen test of homogeneity of variances data: c(2, 3, 2, 3, 4, 4, 5, 5, 8, 9, 9, 8) and gl(3, 4) Fligner-Killeen:med chi-squared = NaN, df = 2, p-value = NA Two simple patches are proposed below. One returns an error, and another returns a p-value of 1. Not sure which one is more appropriate, so submitting both. Warm regards, Karolis Koncevičius --- Index: fligner.test.R =================================================================== --- fligner.test.R (revision 79650) +++ fligner.test.R (working copy) @@ -59,8 +59,13 @@ stop("data are essentially constant") a <- qnorm((1 + rank(abs(x)) / (n + 1)) / 2) - STATISTIC <- sum(tapply(a, g, "sum")^2 / tapply(a, g, "length")) - STATISTIC <- (STATISTIC - n * mean(a)^2) / var(a) + if (var(a) > 0) { + STATISTIC <- sum(tapply(a, g, "sum")^2 / tapply(a, g, "length")) + STATISTIC <- (STATISTIC - n * mean(a)^2) / var(a) + } + else { + STATISTIC <- 0 + } PARAMETER <- k - 1 PVAL <- pchisq(STATISTIC, PARAMETER, lower.tail = FALSE) names(STATISTIC) <- "Fligner-Killeen:med chi-squared” --- Index: fligner.test.R =================================================================== --- fligner.test.R (revision 79650) +++ fligner.test.R (working copy) @@ -57,6 +57,8 @@ x <- x - tapply(x,g,median)[g] if (all(x == 0)) stop("data are essentially constant") + if (var(abs(x)) == 0) + stop("absolute residuals from the median are essentially constant") a <- qnorm((1 + rank(abs(x)) / (n + 1)) / 2) STATISTIC <- sum(tapply(a, g, "sum")^2 / tapply(a, g, "length")) ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel