When it comes to adding more info in the help pages, we'd be remiss not to point out the great engineering work the tidyverse folks have put in to this end:
https://dplyr.tidyverse.org/reference/mutate.html > Methods available in currently loaded packages: dbplyr (tbl_lazy), dplyr > (data.frame) . https://github.com/tidyverse/dplyr/blob/9df9d63234f34837fa058bbd081a42dfb8a4eeb0/R/mutate.R#L78-L79 https://github.com/tidyverse/dplyr/blob/be3e3a05fd0081cb53168d6aedb417d62139b75d/R/doc-methods.R#L57-L75 On Mon, Jun 9, 2025 at 2:25 PM Lluís Revilla <lluis.revi...@gmail.com> wrote: > > Hi, > > I agree that showing that there are other methods might help. > The print.function method could be modified to add this in addition to > print.default output. > > But I guess (new) users would check the help page with ?as.data.frame and not > print the method or use args() (if they don't check with their prefered > LLM/agent). > Would it be helpful to also report these numbers on the documentation page of > the generic too? > > Best, > > Lluís > > > PS: Trying to see what happens with ? and looking for a specific method I > found that on my computer with R-devel (2025-06-08 r88288), the expressions > below the "Not run:" on ? examples raise errors. > > > On Mon, 9 Jun 2025 at 08:07, Michael Chirico <michaelchiri...@gmail.com> > wrote: >> >> Thanks Josh, >> >> With fresh eyes, it's definitely information overload for the >> suggested output to take up more space than the function body itself. >> >> I'm not sure your suggestion gets at the heart of the issue, though, >> which is about steering the user with regards to interpreting '...' >> they see in the printout. >> >> Therefore I would suggest something like this as the economized >> version of my original suggestion: >> >> > print(rbind) >> function (..., deparse.level = 1) >> # ... >> <environment: namespace:base> >> + 1 other method defines 3 other arguments. See methods(rbind). >> >> > print(as.data.frame) >> function (x, row.names = NULL, optional = FALSE, ...) >> # ... >> <environment: namespace:base> >> + 29 other methods define 11 other arguments. See methods(as.data.frame). >> >> Mike C >> >> On Sun, Jun 8, 2025 at 3:57 PM Joshua Ulrich <josh.m.ulr...@gmail.com> wrote: >> > >> > Hi Mike, >> > >> > On Fri, Jun 6, 2025 at 1:59 PM Michael Chirico >> > <michaelchiri...@gmail.com> wrote: >> > > >> > > There is a big difference in how to think of '...' for non-generic >> > > functions like data.frame() vs. S3 generics. >> > > >> > > In the former, it means "any number of inputs" [e.g. columns]; in the >> > > latter, it means "any number of inputs [think c()], as well as any >> > > arguments that might be interpreted by class implementations". >> > > >> > > Understanding the difference for a given generic can require carefully >> > > reading lots of documentation. print(<generic>), which is useful for >> > > so many other contexts, can be a dead end. >> > > >> > > One idea is to extend the print() method to suggest to the reader >> > > which other arguments are available (among registered generics). Often >> > > ?<generic> will include the most common implementation, but not always >> > > so. >> > > >> > > For rbind (in a --vanilla session), we currently have one method, >> > > rbind.data.frame, that offers three arguments not present in the >> > > generic: make.row.names, stringsAsFactors, and factor.exclude. The >> > > proposal would be to mention this in the print(rbind) output somehow, >> > > e.g. >> > > >> > > > print(rbind) >> > > function (..., deparse.level = 1) >> > > .Internal(rbind(deparse.level, ...)) >> > > <bytecode: 0x73d4fd824e20> >> > > <environment: namespace:base> >> > > >> > > +Other arguments implemented by methods >> > > + factor.exclude: rbind.data.frame >> > > + make.row.names: rbind.data.frame >> > > + stringsAsFactors: rbind.data.frame >> > > >> > > I suggest grouping by argument, not generic, although something like >> > > this could be OK too: >> > > >> > > +Signatures of other methods >> > > + rbind.data.frame(..., deparse.level = 1, make.row.names = TRUE, >> > > stringsAsFactors = FALSE, >> > > + factor.exclude = TRUE) >> > > >> > > Where it gets more interesting is when there are many methods, e.g. >> > > for as.data.frame (again, in a --vanilla session): >> > > >> > > > print(as.data.frame) >> > > function (x, row.names = NULL, optional = FALSE, ...) >> > > { >> > > if (is.null(x)) >> > > return(as.data.frame(list())) >> > > UseMethod("as.data.frame") >> > > } >> > > <bytecode: 0x73d4fc1e70d0> >> > > <environment: namespace:base> >> > > >> > > +Other arguments implemented by methods >> > > + base: as.data.frame.table >> > > + check.names: as.data.frame.list >> > > + col.names: as.data.frame.list >> > > + cut.names: as.data.frame.list >> > > + fix.empty.names: as.data.frame.list >> > > + make.names: as.data.frame.matrix, as.data.frame.model.matrix >> > > + new.names: as.data.frame.list >> > > + nm: as.data.frame.bibentry, as.data.frame.complex, as.data.frame.Date, >> > > + as.data.frame.difftime, as.data.frame.factor, as.data.frame.integer, >> > > + as.data.frame.logical, as.data.frame.noquote, as.data.frame.numeric, >> > > + as.data.frame.numeric_version, as.data.frame.ordered, >> > > + as.data.frame.person, as.data.frame.POSIXct, as.data.frame.raw >> > > + responseName: as.data.frame.table >> > > + sep: as.data.frame.table >> > > + stringsAsFactors: as.data.frame.character, as.data.frame.list, >> > > + as.data.frame.matrix, as.data.frame.table >> > > >> > > Or >> > > >> > > +Signatures of other methods >> > > + as.data.frame.aovproj(x, ...) >> > > + as.data.frame.array(x, row.names = NULL, optional = FALSE, ...) >> > > + as.data.frame.AsIs(x, row.names = NULL, optional = FALSE, ...) >> > > + as.data.frame.bibentry(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.character(x, ..., stringsAsFactors = FALSE) >> > > + as.data.frame.citation(x, row.names = NULL, optional = FALSE, ...) >> > > + as.data.frame.complex(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.data.frame(x, row.names = NULL, ...) >> > > + as.data.frame.Date(x, row.names = NULL, optional = FALSE, ..., nm = >> > > deparse1(substitute(x))) >> > > + as.data.frame.default(x, ...) >> > > + as.data.frame.difftime(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.factor(x, row.names = NULL, optional = FALSE, ..., nm >> > > = deparse1(substitute(x))) >> > > + as.data.frame.ftable(x, row.names = NULL, optional = FALSE, ...) >> > > + as.data.frame.integer(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.list(x, row.names = NULL, optional = FALSE, ..., >> > > cut.names = FALSE, >> > > + col.names = names(x), fix.empty.names = TRUE, new.names = >> > > !missing(col.names), >> > > + check.names = !optional, stringsAsFactors = FALSE) >> > > + as.data.frame.logical(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.logLik(x, ...) >> > > + as.data.frame.matrix(x, row.names = NULL, optional = FALSE, >> > > make.names = TRUE, >> > > + ..., stringsAsFactors = FALSE) >> > > + as.data.frame.model.matrix(x, row.names = NULL, optional = FALSE, >> > > make.names = TRUE, >> > > + ...) >> > > + as.data.frame.noquote(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.numeric(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.numeric_version(x, row.names = NULL, optional = >> > > FALSE, ..., nm = deparse1(substitute(x))) >> > > + as.data.frame.ordered(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.person(x, row.names = NULL, optional = FALSE, ..., nm >> > > = deparse1(substitute(x))) >> > > + as.data.frame.POSIXct(x, row.names = NULL, optional = FALSE, ..., >> > > nm = deparse1(substitute(x))) >> > > + as.data.frame.POSIXlt(x, row.names = NULL, optional = FALSE, ...) >> > > + as.data.frame.raw(x, row.names = NULL, optional = FALSE, ..., nm = >> > > deparse1(substitute(x))) >> > > + as.data.frame.table(x, row.names = NULL, ..., responseName = >> > > "Freq", stringsAsFactors = TRUE, >> > > + sep = "", base = list(LETTERS)) >> > > + as.data.frame.ts(x, ...) >> > > >> > > Obviously that's a bit more cluttered, but as.data.frame() should be a >> > > pretty unusual case. It also highlights better the differences in the >> > > two approaches: the former economizes on space and focuses on what >> > > sorts of arguments are available; the latter shows the defaults, does >> > > not hide the arguments shared with the generic, and will always >> > > produce as many lines as there are methods. >> > > >> > > There are other edge cases to think through (multiple registrations, >> > > interactions with S4, primitives, ...), but I want to first check with >> > > the list if this looks workable & valuable enough to pursue. >> > > >> > I like and appreciate the intent behind your suggestion, though I >> > don't like all the extra output from printing the generic. I want to >> > look at the function body when I print it. And as you show, it can >> > output a lot of information you're probably not interested in. >> > >> > What about adding the number of methods to printed output for >> > generics, and a suggestion to use `methods(some_generic)` to get a >> > list of them? Then you can use help(some_method) or args(some_method) >> > to get more information about the specific method(s) you're interested >> > in. >> > >> > Best, >> > Josh >> > >> > > Mike C >> > > >> > > ---- >> > > >> > > Code that helped with the above: >> > > >> > > f = as.data.frame >> > > # NB: methods() and getAnywhere() require {utils} >> > > m = methods(f) >> > > generic_args = names(formals(f)) >> > > f_methods = lapply(m, \(fn) getAnywhere(fn)$objs[[1L]]) >> > > names(f_methods) = m >> > > new_args = sapply(f_methods, \(g) setdiff(names(formals(g)), >> > > generic_args)) >> > > with( # group by argument name >> > > data.frame(method = rep(names(new_args), lengths(new_args)), arg = >> > > unlist(new_args), row.names=NULL), >> > > {tbl = tapply(method, arg, toString); writeLines(paste0(names(tbl), >> > > ": ", tbl))} >> > > ) >> > > signatures=sapply(f_methods, \(g) paste(head(format(args(g)), -1), >> > > collapse="\n")) >> > > writeLines(paste0(names(signatures), gsub("^\\s*function\\s*", "", >> > > signatures))) >> > > >> > > ______________________________________________ >> > > R-devel@r-project.org mailing list >> > > https://stat.ethz.ch/mailman/listinfo/r-devel >> > >> > >> > >> > -- >> > Joshua Ulrich | about.me/joshuaulrich >> > FOSS Trading | www.fosstrading.com >> >> ______________________________________________ >> R-devel@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-devel ______________________________________________ R-devel@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-devel