>> I have come across your reported log1p error (#2837) on a NetBSD (1.6W) >> system.
I've just made further experiments on the deficient log1p() function on OpenBSD 3.2 and NetBSD 1.6 with this test program: % cat bug-log1p.c #include <stdio.h> #include <stdlib.h> #include <math.h> int main(int argc, char* argv[]) { int k; double x; for (k = 0; k <= 100; ++k) { x = pow(2.0,(double)(-k)); printf("%3d\t%.15e\t%.15e\n", k, log1p(x), log(1.0 + x)); } return (EXIT_SUCCESS); } % cc bug-log1p.c -lm && ./a.out 0 6.931471805599453e-01 6.931471805599453e-01 1 4.054651081081644e-01 4.054651081081644e-01 2 2.231435513142098e-01 2.231435513142098e-01 ... 51 4.440892098500625e-16 4.440892098500625e-16 52 2.220446049250313e-16 2.220446049250313e-16 53 0.000000000000000e+00 0.000000000000000e+00 54 0.000000000000000e+00 0.000000000000000e+00 ... 99 0.000000000000000e+00 0.000000000000000e+00 100 0.000000000000000e+00 0.000000000000000e+00 Evidently, on these systems, log1p(x) is carelessly implemented as log(1+x). Correct output from FreeBSD 5.0, Sun Solaris 9, ... looks like this: % cc bug-log1p.c -lm && ./a.out 0 6.931471805599453e-01 6.931471805599453e-01 1 4.054651081081644e-01 4.054651081081644e-01 2 2.231435513142098e-01 2.231435513142098e-01 ... 51 4.440892098500625e-16 4.440892098500625e-16 52 2.220446049250313e-16 2.220446049250313e-16 53 1.110223024625157e-16 0.000000000000000e+00 54 5.551115123125783e-17 0.000000000000000e+00 ... 99 1.577721810442024e-30 0.000000000000000e+00 100 7.888609052210118e-31 0.000000000000000e+00 The whole point of log1p(x) is to return accurate results for |x| << 1, and the OpenBSD/FreeBSD folks failed to understand that. The simple solution for a missing log1p() that I adopted in hoc is this internal function: fp_t Log1p(fp_t x) { #if defined(HAVE_LOG1PF) || defined(HAVE_LOG1P) || defined(HAVE_LOG1PL) return (log1p(x)); #else fp_t u; /* Use log(), corrected to first order for truncation loss */ u = FP(1.0) + x; if (u == FP(1.0)) return (x); else return (log(u) * (x / (u - FP(1.0)) )); #endif } I have yet to put in an accuracy test in hoc's configure.in that will check for a broken log1p(), and use the internal fallback implementation instead. Here is a test comparing accuracy of the two log1p() implementations on Sun Solaris 9, which has a good log1p() implementation: % cat cmp-log1p.c #include <stdio.h> #include <stdlib.h> #include <math.h> double LOG1P(double x) { double u; u = 1.0 + x; if (u == 1.0) return (x); else return (log(u) * (x / (u - 1.0))); } int main(int argc, char* argv[]) { int k; double d; double x; for (k = 0; k <= 100; ++k) { x = pow(2.0,(double)(-k)); printf("%3d\t%.15e\t%.15e\t%.2e\n", k, log1p(x), LOG1P(x), (LOG1P(x) - log1p(x))/LOG1P(x)); } return (EXIT_SUCCESS); } % cc cmp-log1p.c -lm && ./a.out 0 6.931471805599453e-01 6.931471805599453e-01 0.00e+00 1 4.054651081081644e-01 4.054651081081644e-01 0.00e+00 2 2.231435513142098e-01 2.231435513142098e-01 0.00e+00 ... 51 4.440892098500625e-16 4.440892098500625e-16 0.00e+00 52 2.220446049250313e-16 2.220446049250313e-16 0.00e+00 53 1.110223024625157e-16 1.110223024625157e-16 0.00e+00 54 5.551115123125783e-17 5.551115123125783e-17 0.00e+00 ... 98 3.155443620884047e-30 3.155443620884047e-30 0.00e+00 99 1.577721810442024e-30 1.577721810442024e-30 0.00e+00 100 7.888609052210118e-31 7.888609052210118e-31 0.00e+00 At least for test arguments of the form 2^(-k), my LOG1P() is identical to log1p(). A simple change to that test program, inserting x *= (double)rand() / (double)(RAND_MAX); after the assignment to x to pick a random value near a power of k, produces output like this: % cc cmp-log1p-2.c -lm && ./a.out 0 4.146697237286190e-01 4.146697237286190e-01 0.00e+00 1 8.421502722841255e-02 8.421502722841256e-02 1.65e-16 2 7.432648260535767e-02 7.432648260535767e-02 0.00e+00 ... 48 2.771522173451896e-15 2.771522173451896e-15 1.42e-16 49 1.346294923235749e-15 1.346294923235749e-15 0.00e+00 50 8.498507032336806e-16 8.498507032336806e-16 0.00e+00 51 1.246870549827746e-17 1.246870549827746e-17 0.00e+00 52 7.077345664348359e-17 7.077345664348359e-17 0.00e+00 ... 98 2.127061943360297e-30 2.127061943360297e-30 0.00e+00 99 1.276978671673724e-30 1.276978671673724e-30 0.00e+00 100 1.252374165764246e-31 1.252374165764246e-31 0.00e+00 For all random test arguments x < 2^(-49), the relative error of LOG1P() vs log1p() is zero. ------------------------------------------------------------------------------- - Nelson H. F. Beebe Tel: +1 801 581 5254 - - Center for Scientific Computing FAX: +1 801 581 4148 - - University of Utah Internet e-mail: [EMAIL PROTECTED] - - Department of Mathematics, 110 LCB [EMAIL PROTECTED] [EMAIL PROTECTED] - - 155 S 1400 E RM 233 [EMAIL PROTECTED] - - Salt Lake City, UT 84112-0090, USA URL: http://www.math.utah.edu/~beebe - ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-devel