The fix I proposed is now in the R-devel sources, if you could please try it. (It should appear in the next snapshot after now.)
On Mon, 25 Aug 2003, Prof Brian Ripley wrote: > There is already a usable log1p implementation in src/nmath/log1p, for > platforms without it. All we need to do is to arrange to use it on those > systems with broken versions. That's not easy without access to such a > platform to test it, though. > > On Mon, 25 Aug 2003 [EMAIL PROTECTED] wrote: > > > >> I have come across your reported log1p error (#2837) on a NetBSD (1.6W) > > >> system. > > > > I've just made further experiments on the deficient log1p() function > > on OpenBSD 3.2 and NetBSD 1.6 with this test program: > > > > % cat bug-log1p.c > > #include <stdio.h> > > #include <stdlib.h> > > #include <math.h> > > > > int > > main(int argc, char* argv[]) > > { > > int k; > > double x; > > > > for (k = 0; k <= 100; ++k) > > { > > x = pow(2.0,(double)(-k)); > > printf("%3d\t%.15e\t%.15e\n", k, log1p(x), log(1.0 + x)); > > } > > > > return (EXIT_SUCCESS); > > } > > > > % cc bug-log1p.c -lm && ./a.out > > 0 6.931471805599453e-01 6.931471805599453e-01 > > 1 4.054651081081644e-01 4.054651081081644e-01 > > 2 2.231435513142098e-01 2.231435513142098e-01 > > ... > > 51 4.440892098500625e-16 4.440892098500625e-16 > > 52 2.220446049250313e-16 2.220446049250313e-16 > > 53 0.000000000000000e+00 0.000000000000000e+00 > > 54 0.000000000000000e+00 0.000000000000000e+00 > > ... > > 99 0.000000000000000e+00 0.000000000000000e+00 > > 100 0.000000000000000e+00 0.000000000000000e+00 > > > > Evidently, on these systems, log1p(x) is carelessly implemented as > > log(1+x). Correct output from FreeBSD 5.0, Sun Solaris 9, ... looks > > like this: > > > > % cc bug-log1p.c -lm && ./a.out > > 0 6.931471805599453e-01 6.931471805599453e-01 > > 1 4.054651081081644e-01 4.054651081081644e-01 > > 2 2.231435513142098e-01 2.231435513142098e-01 > > ... > > 51 4.440892098500625e-16 4.440892098500625e-16 > > 52 2.220446049250313e-16 2.220446049250313e-16 > > 53 1.110223024625157e-16 0.000000000000000e+00 > > 54 5.551115123125783e-17 0.000000000000000e+00 > > ... > > 99 1.577721810442024e-30 0.000000000000000e+00 > > 100 7.888609052210118e-31 0.000000000000000e+00 > > > > The whole point of log1p(x) is to return accurate results for > > |x| << 1, and the OpenBSD/FreeBSD folks failed to understand that. > > > > The simple solution for a missing log1p() that I adopted in hoc is > > this internal function: > > > > fp_t > > Log1p(fp_t x) > > { > > #if defined(HAVE_LOG1PF) || defined(HAVE_LOG1P) || defined(HAVE_LOG1PL) > > return (log1p(x)); > > #else > > fp_t u; > > /* Use log(), corrected to first order for truncation loss */ > > u = FP(1.0) + x; > > if (u == FP(1.0)) > > return (x); > > else > > return (log(u) * (x / (u - FP(1.0)) )); > > #endif > > } > > > > I have yet to put in an accuracy test in hoc's configure.in that will > > check for a broken log1p(), and use the internal fallback > > implementation instead. > > > > Here is a test comparing accuracy of the two log1p() implementations > > on Sun Solaris 9, which has a good log1p() implementation: > > > > % cat cmp-log1p.c > > #include <stdio.h> > > #include <stdlib.h> > > #include <math.h> > > > > double > > LOG1P(double x) > > { > > double u; > > > > u = 1.0 + x; > > if (u == 1.0) > > return (x); > > else > > return (log(u) * (x / (u - 1.0))); > > } > > > > > > int > > main(int argc, char* argv[]) > > { > > int k; > > double d; > > double x; > > > > for (k = 0; k <= 100; ++k) > > { > > x = pow(2.0,(double)(-k)); > > > > printf("%3d\t%.15e\t%.15e\t%.2e\n", > > k, log1p(x), LOG1P(x), (LOG1P(x) - log1p(x))/LOG1P(x)); > > } > > > > return (EXIT_SUCCESS); > > } > > > > % cc cmp-log1p.c -lm && ./a.out > > 0 6.931471805599453e-01 6.931471805599453e-01 0.00e+00 > > 1 4.054651081081644e-01 4.054651081081644e-01 0.00e+00 > > 2 2.231435513142098e-01 2.231435513142098e-01 0.00e+00 > > ... > > 51 4.440892098500625e-16 4.440892098500625e-16 0.00e+00 > > 52 2.220446049250313e-16 2.220446049250313e-16 0.00e+00 > > 53 1.110223024625157e-16 1.110223024625157e-16 0.00e+00 > > 54 5.551115123125783e-17 5.551115123125783e-17 0.00e+00 > > ... > > 98 3.155443620884047e-30 3.155443620884047e-30 0.00e+00 > > 99 1.577721810442024e-30 1.577721810442024e-30 0.00e+00 > > 100 7.888609052210118e-31 7.888609052210118e-31 0.00e+00 > > > > At least for test arguments of the form 2^(-k), my LOG1P() is > > identical to log1p(). > > > > A simple change to that test program, inserting > > > > x *= (double)rand() / (double)(RAND_MAX); > > > > after the assignment to x to pick a random value near a power of k, > > produces output like this: > > > > % cc cmp-log1p-2.c -lm && ./a.out > > 0 4.146697237286190e-01 4.146697237286190e-01 0.00e+00 > > 1 8.421502722841255e-02 8.421502722841256e-02 1.65e-16 > > 2 7.432648260535767e-02 7.432648260535767e-02 0.00e+00 > > ... > > 48 2.771522173451896e-15 2.771522173451896e-15 1.42e-16 > > 49 1.346294923235749e-15 1.346294923235749e-15 0.00e+00 > > 50 8.498507032336806e-16 8.498507032336806e-16 0.00e+00 > > 51 1.246870549827746e-17 1.246870549827746e-17 0.00e+00 > > 52 7.077345664348359e-17 7.077345664348359e-17 0.00e+00 > > ... > > 98 2.127061943360297e-30 2.127061943360297e-30 0.00e+00 > > 99 1.276978671673724e-30 1.276978671673724e-30 0.00e+00 > > 100 1.252374165764246e-31 1.252374165764246e-31 0.00e+00 > > > > For all random test arguments x < 2^(-49), the relative error of > > LOG1P() vs log1p() is zero. > > > > ------------------------------------------------------------------------------- > > - Nelson H. F. Beebe Tel: +1 801 581 5254 - > > - Center for Scientific Computing FAX: +1 801 581 4148 - > > - University of Utah Internet e-mail: [EMAIL PROTECTED] - > > - Department of Mathematics, 110 LCB [EMAIL PROTECTED] [EMAIL PROTECTED] - > > - 155 S 1400 E RM 233 [EMAIL PROTECTED] - > > - Salt Lake City, UT 84112-0090, USA URL: http://www.math.utah.edu/~beebe - > > > > ______________________________________________ > > [EMAIL PROTECTED] mailing list > > https://www.stat.math.ethz.ch/mailman/listinfo/r-devel > > > > > > -- Brian D. Ripley, [EMAIL PROTECTED] Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272866 (PA) Oxford OX1 3TG, UK Fax: +44 1865 272595 ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-devel