As I am reading ?arima, only NA entries in the argument fixed= imports. The following seems to indicate otherwise:
x <- arima.sim(model=list(ar=0.8), n=100) + (1:100)/50 > t <- 1:100 > mod1 <- lm(x ~ t) > > init1 <- c(0, coef(mod1)[2]) > fixed1 <- c(as.numeric(NA), 0) > > arima(x, order=c(1,0,0), xreg=t, include.mean=FALSE, init=init1, fixed=fixed1) Call: arima(x = x, order = c(1, 0, 0), xreg = t, include.mean = FALSE, fixed = fixed1, init = init1) Coefficients: ar1 t 0.9281 0 s.e. 0.0357 0 sigma^2 estimated as 0.9186: log likelihood = -138.64, aic = 281.28 > > init2 <- init1 > init2[2] <- 0 > > fixed2 <- init1 > fixed2[1] <- as.numeric(NA) > > arima(x, order=c(1,0,0), xreg=t, include.mean=FALSE, init=init2, fixed=fixed2) Call: arima(x = x, order = c(1, 0, 0), xreg = t, include.mean = FALSE, fixed = fixed2, init = init2) Coefficients: ar1 t 0.7888 0.0377 s.e. 0.0593 0.0000 sigma^2 estimated as 0.8452: log likelihood = -133.97, aic = 271.94 > > fixed1 [1] NA 0 > fixed2 t NA 0.03767406 > arima(x, order=c(1,0,0), xreg=t, include.mean=FALSE, init=init2, fixed=fixed1) Call: arima(x = x, order = c(1, 0, 0), xreg = t, include.mean = FALSE, fixed = fixed1, init = init2) Coefficients: ar1 t 0.9281 0 s.e. 0.0357 0 sigma^2 estimated as 0.9186: log likelihood = -138.64, aic = 281.28 Kjetil Halvorsen ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-devel