Full_Name: Madeleine Yeh Version: 1.9.1 OS: AIX 5.2 Submission from: (NULL) (151.121.225.1)
After compiling R-1.9.1 on AIX 5.2 using the IBM cc compiler, I ran the checks. One of them failed. Here is the output from running the check solo. [EMAIL PROTECTED]:/fsapps/test/build/R/1.9.1/R-1.9.1/tests/Examples: ># ../../bin/R --vanilla < stats-Ex.R R : Copyright 2004, The R Foundation for Statistical Computing Version 1.9.1 (2004-06-21), ISBN 3-900051-00-3 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for a HTML browser interface to help. Type 'q()' to quit R. > ### * <HEADER> > ### > attach(NULL, name = "CheckExEnv") > assign(".CheckExEnv", as.environment(2), pos = length(search())) # base > ## add some hooks to label plot pages, at least for base graphics > .newplot.hook <- function() + { + pp <- par(c("mfg","mfcol","oma","mar")) + if(all(pp$mfg[1:2] == c(1, pp$mfcol[2]))) { + outer <- (oma4 <- pp$oma[4]) > 0; mar4 <- pp$mar[4] + mtext(paste("help(", ..nameEx, ")"), side = 4, + line = if(outer)max(1, oma4 - 1) else min(1, mar4 - 1), + outer = outer, adj = 1, cex = .8, col = "orchid", las=3) + } + } > setHook("plot.new", .newplot.hook) > setHook("persp", .newplot.hook) > rm(.newplot.hook) > ## add some hooks to label plot pages for grid graphics > .gridplot.hook <- function() + { + pushViewport(viewport(width=unit(1, "npc") - unit(1, "lines"), + x=0, just="left")) + grid.text(paste("help(", ..nameEx, ")"), + x=unit(1, "npc") + unit(0.5, "lines"), + y=unit(0.8, "npc"), rot=90, + gp=gpar(col="orchid")) + } > setHook("grid.newpage", .gridplot.hook) > rm(.gridplot.hook) > assign("cleanEx", + function(env = .GlobalEnv) { + rm(list = ls(envir = env, all.names = TRUE), envir = env) + RNGkind("default", "default") + set.seed(1) + options(warn = 1) + assign("T", delay(stop("T used instead of TRUE")), + pos = .CheckExEnv) + assign("F", delay(stop("F used instead of FALSE")), + pos = .CheckExEnv) + sch <- search() + newitems <- sch[! sch %in% .oldSearch] + for(item in rev(newitems)) + eval(substitute(detach(item), list(item=item))) + missitems <- .oldSearch[! .oldSearch %in% sch] + if(length(missitems)) + warning("items ", paste(missitems, collapse=", "), + " have been removed from the search path") + }, + env = .CheckExEnv) > assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) # for now > assign("ptime", proc.time(), env = .CheckExEnv) > graphics::postscript("stats-Examples.ps") > assign("par.postscript", graphics::par(no.readonly = TRUE), env = .CheckExEnv) > options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly")) > library('stats') > > assign(".oldSearch", search(), env = .CheckExEnv) > cleanEx(); ..nameEx <- "AIC" > > ### * AIC > > flush(stderr()); flush(stdout()) > > ### Name: AIC > ### Title: Akaike's An Information Criterion > ### Aliases: AIC > ### Keywords: models > > ### ** Examples > > data(swiss) > lm1 <- lm(Fertility ~ . , data = swiss) > AIC(lm1) [1] 326.0716 > stopifnot(all.equal(AIC(lm1), + AIC(logLik(lm1)))) > ## a version of BIC or Schwarz' BC : > AIC(lm1, k = log(nrow(swiss))) [1] 339.0226 > > > > cleanEx(); ..nameEx <- "ARMAacf" > > ### * ARMAacf > > flush(stderr()); flush(stdout()) > > ### Name: ARMAacf > ### Title: Compute Theoretical ACF for an ARMA Process > ### Aliases: ARMAacf > ### Keywords: ts > > ### ** Examples > > ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10) 0 1 2 3 4 5 1.000000000 0.875000000 0.625000000 0.406250000 0.250000000 0.148437500 6 7 8 9 10 0.085937500 0.048828125 0.027343750 0.015136719 0.008300781 > ## Example from Brockwell & Davis (1991, pp.92-4) > ## answer 2^(-n) * (32/3 + 8 * n) /(32/3) > n <- 1:10; 2^(-n) * (32/3 + 8 * n) /(32/3) [1] 0.875000000 0.625000000 0.406250000 0.250000000 0.148437500 0.085937500 [7] 0.048828125 0.027343750 0.015136719 0.008300781 > ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE) [1] 0.8750000 -0.6000000 0.3750000 -0.2727273 0.2142857 -0.1764706 [7] 0.1500000 -0.1304348 0.1153846 -0.1034483 > ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE) [1] 8.000000e-01 -2.500000e-01 -6.579099e-17 -3.045879e-19 5.302086e-19 [6] 2.059071e-17 -6.361500e-33 -1.027984e-17 5.139921e-18 1.606263e-33 > > > > cleanEx(); ..nameEx <- "ARMAtoMA" > > ### * ARMAtoMA > > flush(stderr()); flush(stdout()) > > ### Name: ARMAtoMA > ### Title: Convert ARMA Process to Infinite MA Process > ### Aliases: ARMAtoMA > ### Keywords: ts > > ### ** Examples > > ARMAtoMA(c(1.0, -0.25), 1.0, 10) [1] 2.00000000 1.75000000 1.25000000 0.81250000 0.50000000 0.29687500 [7] 0.17187500 0.09765625 0.05468750 0.03027344 > ## Example from Brockwell & Davis (1991, p.92) > ## answer (1 + 3*n)*2^(-n) > n <- 1:10; (1 + 3*n)*2^(-n) [1] 2.00000000 1.75000000 1.25000000 0.81250000 0.50000000 0.29687500 [7] 0.17187500 0.09765625 0.05468750 0.03027344 > > > > cleanEx(); ..nameEx <- "AirPassengers" > > ### * AirPassengers > > flush(stderr()); flush(stdout()) > > ### Name: AirPassengers > ### Title: Monthly Airline Passenger Numbers 1949-1960 > ### Aliases: AirPassengers > ### Keywords: datasets > > ### ** Examples > > ## Not run: ## These are quite slow and so not run by example(AirPassengers) > ##D > ##D data(AirPassengers) > ##D ## The classic 'airline model', by full ML > ##D (fit <- arima(log10(AirPassengers), c(0, 1, 1), > ##D seasonal = list(order=c(0, 1 ,1), period=12))) > ##D update(fit, method = "CSS") > ##D update(fit, x=window(log10(AirPassengers), start = 1954)) > ##D pred <- predict(fit, n.ahead = 24) > ##D tl <- pred$pred - 1.96 * pred$se > ##D tu <- pred$pred + 1.96 * pred$se > ##D ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1,2,2)) > ##D > ##D ## full ML fit is the same if the series is reversed, CSS fit is not > ##D ap0 <- rev(log10(AirPassengers)) > ##D attributes(ap0) <- attributes(AirPassengers) > ##D arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12)) > ##D arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12), > ##D method = "CSS") > ##D > ##D ## Structural Time Series > ##D ap <- log10(AirPassengers) - 2 > ##D (fit <- StructTS(ap, type= "BSM")) > ##D par(mfrow=c(1,2)) > ##D plot(cbind(ap, fitted(fit)), plot.type = "single") > ##D plot(cbind(ap, tsSmooth(fit)), plot.type = "single") > ## End(Not run) > > > cleanEx(); ..nameEx <- "BOD" > > ### * BOD > > flush(stderr()); flush(stdout()) > > ### Name: BOD > ### Title: Biochemical Oxygen Demand > ### Aliases: BOD > ### Keywords: datasets > > ### ** Examples > > data(BOD) > # simplest form of fitting a first-order model to these data > fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD, + start = c(A = 20, lrc = log(.35))) > coef(fm1) A lrc 19.1425768 -0.6328215 > print(fm1) Nonlinear regression model model: demand ~ A * (1 - exp(-exp(lrc) * Time)) data: BOD A lrc 19.1425768 -0.6328215 residual sum-of-squares: 25.99027 > # using the plinear algorithm > fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD, + start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE) 32.94622 : -1.049822 22.126001 25.99248 : -0.6257161 19.1031883 25.99027 : -0.6327039 19.1419223 25.99027 : -0.6328192 19.1425644 > # using a self-starting model > fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD) > summary( fm3 ) Formula: demand ~ SSasympOrig(Time, A, lrc) Parameters: Estimate Std. Error t value Pr(>|t|) A 19.1426 2.4959 7.670 0.00155 ** lrc -0.6328 0.3824 -1.655 0.17328 --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 2.549 on 4 degrees of freedom Correlation of Parameter Estimates: A lrc -0.8528 > > > > cleanEx(); ..nameEx <- "Beta" > > ### * Beta > > flush(stderr()); flush(stdout()) > > ### Name: Beta > ### Title: The Beta Distribution > ### Aliases: Beta dbeta pbeta qbeta rbeta > ### Keywords: distribution > > ### ** Examples > > x <- seq(0, 1, length=21) > dbeta(x, 1, 1) [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 > pbeta(x, 1, 1) [1] 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 [16] 0.75 0.80 0.85 0.90 0.95 1.00 > > > > cleanEx(); ..nameEx <- "Binomial" > > ### * Binomial > > flush(stderr()); flush(stdout()) > > ### Name: Binomial > ### Title: The Binomial Distribution > ### Aliases: Binomial dbinom pbinom qbinom rbinom > ### Keywords: distribution > > ### ** Examples > > # Compute P(45 < X < 55) for X Binomial(100,0.5) > sum(dbinom(46:54, 100, 0.5)) [1] 0.6317984 > > ## Using "log = TRUE" for an extended range : > n <- 2000 > k <- seq(0, n, by = 20) > plot (k, dbinom(k, n, pi/10, log=TRUE), type='l', ylab="log density", + main = "dbinom(*, log=TRUE) is better than log(dbinom(*))") > lines(k, log(dbinom(k, n, pi/10)), col='red', lwd=2) > ## extreme points are omitted since dbinom gives 0. > mtext("dbinom(k, log=TRUE)", adj=0) > mtext("extended range", adj=0, line = -1, font=4) > mtext("log(dbinom(k))", col="red", adj=1) > > > > cleanEx(); ..nameEx <- "Cauchy" > > ### * Cauchy > > flush(stderr()); flush(stdout()) > > ### Name: Cauchy > ### Title: The Cauchy Distribution > ### Aliases: Cauchy dcauchy pcauchy qcauchy rcauchy > ### Keywords: distribution > > ### ** Examples > > dcauchy(-1:4) [1] 0.15915494 0.31830989 0.15915494 0.06366198 0.03183099 0.01872411 > > > > cleanEx(); ..nameEx <- "ChickWeight" > > ### * ChickWeight > > flush(stderr()); flush(stdout()) > > ### Name: ChickWeight > ### Title: Weight versus age of chicks on different diets > ### Aliases: ChickWeight > ### Keywords: datasets > > ### ** Examples > > data(ChickWeight) > coplot(weight ~ Time | Chick, data = ChickWeight, + type = "b", show = FALSE) > ## fit a representative chick > fm1 <- nls(weight ~ SSlogis( Time, Asym, xmid, scal ), + data = ChickWeight, subset = Chick == 1) > summary( fm1 ) Formula: weight ~ SSlogis(Time, Asym, xmid, scal) Parameters: Estimate Std. Error t value Pr(>|t|) Asym 937.0213 465.8578 2.011 0.07516 . xmid 35.2228 8.3119 4.238 0.00218 ** scal 11.4052 0.9052 12.599 5.08e-07 *** --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 2.919 on 9 degrees of freedom Correlation of Parameter Estimates: Asym xmid xmid 0.9991 scal 0.9745 0.9829 > > > > cleanEx(); ..nameEx <- "Chisquare" > > ### * Chisquare > > flush(stderr()); flush(stdout()) > > ### Name: Chisquare > ### Title: The (non-central) Chi-Squared Distribution > ### Aliases: Chisquare dchisq pchisq qchisq rchisq > ### Keywords: distribution > > ### ** Examples > > dchisq(1, df=1:3) [1] 0.2419707 0.3032653 0.2419707 > pchisq(1, df= 3) [1] 0.1987480 > pchisq(1, df= 3, ncp = 0:4)# includes the above [1] 0.19874804 0.13229855 0.08787311 0.05824691 0.03853592 > > x <- 1:10 > ## Chi-squared(df = 2) is a special exponential distribution > all.equal(dchisq(x, df=2), dexp(x, 1/2)) [1] TRUE > all.equal(pchisq(x, df=2), pexp(x, 1/2)) [1] TRUE > > ## non-central RNG -- df=0 is ok for ncp > 0: Z0 has point mass at 0! > Z0 <- rchisq(100, df = 0, ncp = 2.) > graphics::stem(Z0) The decimal point is at the | 0 | 0000000000000000000000000000000000000013356778899 1 | 0001333456678888899 2 | 0011444467 3 | 00233345888 4 | 111246 5 | 6 | 7 | 178 8 | 23 > > ## Not run: > ##D ## visual testing > ##D ## do P-P plots for 1000 points at various degrees of freedom > ##D L <- 1.2; n <- 1000; pp <- ppoints(n) > ##D op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0), > ##D oma = c(0,0,3,0)) > ##D for(df in 2^(4*rnorm(9))) { > ##D plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)), > ##D ylab="pchisq(rchisq(.),.)", pch=".") > ##D mtext(paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05) > ##D abline(0,1,col=2) > ##D } > ##D mtext(expression("P-P plots : Noncentral "* > ##D chi^2 *"(n=1000, df=X, ncp= 1.2)"), > ##D cex = 1.5, font = 2, outer=TRUE) > ##D par(op) > ## End(Not run) > > > > cleanEx(); ..nameEx <- "DNase" > > ### * DNase > > flush(stderr()); flush(stdout()) > > ### Name: DNase > ### Title: Elisa assay of DNase > ### Aliases: DNase > ### Keywords: datasets > > ### ** Examples > > data(DNase) > coplot(density ~ conc | Run, data = DNase, + show = FALSE, type = "b") > coplot(density ~ log(conc) | Run, data = DNase, + show = FALSE, type = "b") > ## fit a representative run > fm1 <- nls(density ~ SSlogis( log(conc), Asym, xmid, scal ), + data = DNase, subset = Run == 1) > ## compare with a four-parameter logistic > fm2 <- nls(density ~ SSfpl( log(conc), A, B, xmid, scal ), + data = DNase, subset = Run == 1) > summary(fm2) Formula: density ~ SSfpl(log(conc), A, B, xmid, scal) Parameters: Estimate Std. Error t value Pr(>|t|) A -0.007897 0.017200 -0.459 0.654 B 2.377239 0.109516 21.707 5.35e-11 *** xmid 1.507403 0.102080 14.767 4.65e-09 *** scal 1.062579 0.056996 18.643 3.16e-10 *** --- Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 0.01981 on 12 degrees of freedom Correlation of Parameter Estimates: A B xmid B -0.6375 xmid -0.5176 0.9811 scal -0.8030 0.9266 0.8796 > anova(fm1, fm2) Analysis of Variance Table Model 1: density ~ SSlogis(log(conc), Asym, xmid, scal) Model 2: density ~ SSfpl(log(conc), A, B, xmid, scal) Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F) 1 13 0.0047896 2 12 0.0047073 1 0.0000823 0.2098 0.6551 > > > > cleanEx(); ..nameEx <- "Exponential" > > ### * Exponential > > flush(stderr()); flush(stdout()) > > ### Name: Exponential > ### Title: The Exponential Distribution > ### Aliases: Exponential dexp pexp qexp rexp > ### Keywords: distribution > > ### ** Examples > > dexp(1) - exp(-1) #-> 0 [1] 0 > > > > cleanEx(); ..nameEx <- "Fdist" > > ### * Fdist > > flush(stderr()); flush(stdout()) > > ### Name: FDist > ### Title: The F Distribution > ### Aliases: FDist df pf qf rf > ### Keywords: distribution > > ### ** Examples > > ## the density of the square of a t_m is 2*dt(x, m)/(2*x) > # check this is the same as the density of F_{1,m} > x <- seq(0.001, 5, len=100) > all.equal(df(x^2, 1, 5), dt(x, 5)/x) [1] TRUE > > ## Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2 > p <- seq(1/2, .99, length=50); df <- 10 > rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y)))) > quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9 90% 1.542479e-15 > > > > cleanEx(); ..nameEx <- "GammaDist" > > ### * GammaDist > > flush(stderr()); flush(stdout()) > > ### Name: GammaDist > ### Title: The Gamma Distribution > ### Aliases: GammaDist dgamma pgamma qgamma rgamma > ### Keywords: distribution > > ### ** Examples > > -log(dgamma(1:4, shape=1)) [1] 1 2 3 4 > p <- (1:9)/10 > pgamma(qgamma(p,shape=2), shape=2) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > 1 - 1/exp(qgamma(p, shape=1)) [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 > > > > cleanEx(); ..nameEx <- "Geometric" > > ### * Geometric > > flush(stderr()); flush(stdout()) > > ### Name: Geometric > ### Title: The Geometric Distribution > ### Aliases: Geometric dgeom pgeom qgeom rgeom > ### Keywords: distribution > > ### ** Examples > > qgeom((1:9)/10, prob = .2) [1] 0 0 1 2 3 4 5 7 10 > Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni))) 0 1 2 3 4 5 6 7 8 9 10 11 5 3 3 1 2 2 0 1 0 1 1 1 > > > > cleanEx(); ..nameEx <- "Harman23.cor" > > ### * Harman23.cor > > flush(stderr()); flush(stdout()) > > ### Name: Harman23.cor > ### Title: Harman Example 2.3 > ### Aliases: Harman23.cor > ### Keywords: datasets > > ### ** Examples > > data(Harman23.cor) > (Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor)) Call: factanal(factors = 1, covmat = Harman23.cor) Uniquenesses: height arm.span forearm lower.leg weight 0.158 0.135 0.190 0.187 0.760 bitro.diameter chest.girth chest.width 0.829 0.877 0.801 Loadings: Factor1 height 0.918 arm.span 0.930 forearm 0.900 lower.leg 0.902 weight 0.490 bitro.diameter 0.413 chest.girth 0.351 chest.width 0.446 Factor1 SS loadings 4.064 Proportion Var 0.508 Test of the hypothesis that 1 factor is sufficient. The chi square statistic is 611.44 on 20 degrees of freedom. The p-value is 1.12e-116 > for(factors in 2:4) print(update(Harman23.FA, factors = factors)) Error in La.svd(B) : infinite or missing values in x Execution halted If there is any other information I can give you, please write and I'll send it. thanks; Madeleine ______________________________________________ [EMAIL PROTECTED] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel