Hey,
I am using the ets() function in the forecast package to find out the best
fit parameters for my time-series. I have about 50 sets of time series data.
I'm currently using the function as follows:
ets(x,model="AZZ",opt.crit="mse")
As to my observation about 5-10 of them have been identified by ets to have
a trend and an alpha, beta values have been thrown up - which have been same
in all these cases. When I read up online it came up as a Brown's double
exponential smoothing as opposed to Holt's exponential smoothing (where
alpha and beta differ). I am guessing this is happening as AIC/AICc/BIC
select a model based on accuracy as well as a weight on number of parameters
(1 in case of brown's, 2 in case of holt's). Now if I want to see results of
the best parameters from the Holt's method, how should I go about it?
And is there any study comparing the accuracy of brown's double exponential
model versus holt's exponential model?
Thanks in advance,
Phani
--
A. Phani Kishan
3rd Year B.Tech
Dept. of Computer Science & Engineering
IIT MADRAS
Ph: +919962363545
[[alternative HTML version deleted]]
______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.