Hello,

Can we really make the assumption that the data is sorted. The original example was not:

I am working on a function to make a duplicated value unique. For example,
the original vector would be like : a = c(2,1,1,3,3,3,4)

If we can make the assumption, here is a C++ based version:


nodup_cpp_assumingsorted <- cxxfunction( signature( x_ = "numeric" ), '

    // since we modify x, we need to make a copy
    NumericVector x = clone<NumericVector>(x_);

    int n = x.size() ;
    double current, previous = x[0] ;
    int index ;
    for( int i=1; i<n; i++){
        current = x[i] ;
        if( current == previous ){
            x[i] = current + (++index) / 100.0 ;
        } else {
            index = 0 ;
        }
        previous = current ;
    }
    return x ;
', plugin = "Rcpp" )


with these results:

> x <- sort( sample( 1:100000, size = 300000, replace = TRUE ) )

> system.time( nodup3( x ) )
utilisateur     système      écoulé
      0.090       0.004       0.094
> system.time( nodup3a( x ) )
utilisateur     système      écoulé
      0.036       0.005       0.040
> system.time( nodup4( x ) )
utilisateur     système      écoulé
      0.025       0.004       0.029
> system.time( nodup_cpp_assumingsorted( x) )
utilisateur     système      écoulé
      0.003       0.001       0.004



Now, if we don't make the assumption that the data is sorted, here is another C++ based version:

require( inline )
require( Rcpp )
nodup_cpp <- cxxfunction( signature( x_ = "numeric" ), '

    // since we modify x, we need to make a copy
    NumericVector x = clone<NumericVector>(x_);

    typedef std::map<double,int> imap ;
    typedef imap::value_type pair ;
    imap index ;
    int n = x.size() ;
    double current, previous = x[0] ;
    index.insert( pair( previous, 0 ) );

    imap::iterator it = index.begin() ;
    for( int i=1; i<n; i++){
        current = x[i] ;
        if( current == previous ){
            x[i] = current + ( ++(it->second) / 100.0 ) ;
        } else {
            it = index.find(current) ;
            if( it == index.end() ){
                it = index.insert(
                    current > previous ? it : index.begin(),
                    pair( current, 0 )
                    ) ;
            } else {
                x[i] = current + ( ++(it->second) / 100.0 ) ;
            }
             previous = current ;
        }
    }
    return x ;
', plugin = "Rcpp" )


which gives me this :

> x <- sample( 1:100000, size = 300000, replace = TRUE )
>
> system.time( nodup_cpp( x ) )
utilisateur     système      écoulé
      0.111       0.002       0.113
> system.time( nodup3( sort( x ) ) )
utilisateur     système      écoulé
      0.162       0.011       0.172
> system.time( nodup3a( sort( x ) ) )
utilisateur     système      écoulé
      0.099       0.009       0.109
> system.time( nodup4( sort( x ) ) )
utilisateur     système      écoulé
      0.089       0.004       0.094

so nodup4 is still faster, but the values are not in the right order:

> x <- c( 2, 1, 1, 2 )
> nodup4( sort( x ) )
[1] 1.00 1.01 2.00 2.01
> nodup_cpp( x )
[1] 2.00 1.00 1.01 2.01

Romain

Le 26/11/10 20:01, William Dunlap a écrit :

-----Original Message-----
From: William Dunlap
Sent: Thursday, November 25, 2010 9:31 AM
To: 'randomcz'; [email protected]
Subject: RE: [R] help: program efficiency

If the input vector t is known to be ordered
(or if you only care about runs of duplicated
values, not all duplicated values) the following
is pretty quick

nodup3<- function (t) {
     t + (sequence(rle(t)$lengths) - 1)/100
}

If you don't know if the the input will be ordered
then ave() will do it a bit faster than your
code

nodup2<- function (t) {
     ave(t, t, FUN = function(x) x + (seq_along(x) - 1)/100)
}

E.g., for a sorted sequence of 300,000 numbers drawn with
replacement from 1:100,000 I get:

a2<- sort(sample(1:1e5, size=3e5, replace=TRUE))
system.time(v<- nodup(a2))
    user  system elapsed
    2.78    0.05    3.97
system.time(v2<- nodup2(a2))
    user  system elapsed
    1.83    0.02    2.66
system.time(v3<- nodup3(a2))
    user  system elapsed
    0.18    0.00    0.14
identical(v,v2)&&  identical(v,v3)
[1] TRUE

If speed is truly an issue, the built-in sequence may
be replaced by a faster one that does the same thing:

nodup3a<- function (t) {
     faster.sequence<- function(nvec) {
         seq_len(sum(nvec)) - rep(cumsum(c(0L, nvec[-length(nvec)])),
             nvec)
     }
     t + (faster.sequence(rle(t)$lengths) - 1)/100
}

That took 0.05 seconds on the a2 dataset and produced
identical results.

rle() computes a sort of second difference and
nodup3a computes a cumsum on that second diffence,
to get back to a first difference.  The following
avoids that wasted operation (along with rle's
computation of the values component of its output).

nodup4<- function(t) {
     n<- length(t)
     p<- c(0L, which(t[-1L] != t[-n]), n)
     t + ( seq_len(n) - rep.int(p[-length(p)] + 1L, diff(p)) ) /100
}

That reduced nodup3a's time by about 30% on that dataset.

Bill Dunlap
Spotfire, TIBCO Software
wdunlap tibco.com

-----Original Message-----
From: [email protected]
[mailto:[email protected]] On Behalf Of randomcz
Sent: Thursday, November 25, 2010 6:49 AM
To: [email protected]
Subject: [R] help: program efficiency


hey guys,

I am working on a function to make a duplicated value unique.
For example,
the original vector would be like : a = c(2,1,1,3,3,3,4)
I'll like to transform it into:
a.nodup = 2, 1.01, 1.02, 3.01, 3.02, 3.03, 4
basically, find the duplicates and assign a unique value by
adding a small
amount and keep it in order.
I come up with the following codes, but it runs slow if t is
large. Is there
a better way to do it?
nodup = function(t)
{
   t.index=0
   t.dup=duplicated(t)
   for (i in 2:length(t))
   {
     if (t.dup[i]==T)
       t.index=t.index+0.01
     else t.index=0
     t[i]=t[i]+t.index
   }
   return(t)
}


--
View this message in context:
http://r.789695.n4.nabble.com/help-program-efficiency-tp305907
9p3059079.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.




--
Romain Francois
Professional R Enthusiast
+33(0) 6 28 91 30 30
http://romainfrancois.blog.free.fr
|- http://bit.ly/9VOd3l : ZAT! 2010
|- http://bit.ly/c6DzuX : Impressionnism with R
`- http://bit.ly/czHPM7 : Rcpp Google tech talk on youtube

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to