Could you please help me on the following ANCOVA issue? This is a part of my dataset:
sampling dist h 1 wi 200 0.8687212 2 wi 200 0.8812909 3 wi 200 0.8267464 4 wi 0 0.8554508 5 wi 0 0.9506721 6 wi 0 0.8112781 7 wi 400 0.8687212 8 wi 400 0.8414646 9 wi 400 0.7601675 10 wi 900 0.6577048 11 wi 900 0.6098403 12 wi 900 0.5574382 13 sp 200 0.9149264 14 sp 200 0.9149264 15 sp 200 0.9248187 16 sp 0 0.9974016 17 sp 0 0.9997114 18 sp 0 0.8812909 ... h is the dependent variable, distance the covariate and sampling the factor. the slopes for h~distance linear regressions are significantly different from 0 for all samplings In order to compare the regression slopes for each sampling, i did an ANCOVA with the ancova() function of the HH package: >mod<-ancova(h~sampling*dist,data) There was a significant interaction term: Analysis of Variance Table Response: h Df Sum Sq Mean Sq F value Pr(>F) sampling 3 0.22822 0.07607 13.7476 2.624e-06 *** dist 1 0.51291 0.51291 92.6908 5.703e-12 *** sampling:dist 3 0.05112 0.01704 3.0792 0.03822 * Residuals 40 0.22134 0.00553 Because there exist significantly different regression slopes, I did a post hoc test with glht() to find out between which samplings: >summary(glht(mod, linfct=mcp(sampling="Tukey"))) The results seem to say that there are no significantly different slopes for any of the pair-wise comparisons of factor levels: Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: aov(formula = h ~ sampling * dist, data = data) Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) sp - au == 0 0.06696 0.04562 1.468 0.457 su - au == 0 -0.02238 0.04562 -0.491 0.961 wi - au == 0 0.01203 0.04562 0.264 0.994 su - sp == 0 -0.08934 0.04562 -1.958 0.204 wi - sp == 0 -0.05493 0.04562 -1.204 0.624 wi - su == 0 0.03441 0.04562 0.754 0.875 (Adjusted p values reported -- single-step method) Warning message: In mcp2matrix(model, linfct = linfct) : covariate interactions found -- default contrast might be inappropriate My questions are: - Did I make a mistake somewhere? (I probably did!) - Could I do pairwise ANCOVAs and thus have just two factor levels (=two regression slopes) to compare each time? What does the warning message "covariate interactions found -- default contrast might be inappropriate" mean? Thank you! Athanasios Evagelopoulos ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.