Hi Michael,

I dont need private help, 
I am not sure what do you mean by global assignment and/or lexical scoping does 
what you want?

What I would like to have call one r object(vectx) from the function (M1) with 
out me using this line of code modInd <- 
ModelFun(Trdat=dat,Tedat=dat,mdat=dat,nsam=-1,conv=conv) because if I used this 
code it will let me call vectx, but at the same time it will execute all the 
other code in M1 which I don't want.

Hope this clear.

Thank you so much 

> From: michael.weyla...@gmail.com
> Date: Thu, 8 Nov 2012 16:46:14 +0000
> Subject: Re: [R] Calling R object from R function
> To: frespi...@hotmail.com; r-help@r-project.org
> 
> On Thu, Nov 8, 2012 at 2:44 PM, Fares Said <frespi...@hotmail.com> wrote:
> > Hi Michael,
> >
> > you mentioned I can get help, can you give more details please.
> 
> Hi Fares,
> 
> I also asked that you keep our correspondance on the mailing list.
> Please do so. If you want private help, you can seek a local
> statistical consultancy, but free help is available here, if you
> follow protocol.
> 
> >
> > I also edited the example to make productive.
> 
> But I'm not using Nabble and neither are most of your other potential
> respondents: if you want to use an email help list, it's much better
> to use email. For instance, if we check the official R help archives
> -- https://stat.ethz.ch/pipermail/r-help/2012-November/328391.html --
> you'll see your post wasn't changed. It's rather wretched that Nabble
> allows that, in my opinion, as it invalidates conversations.
> 
> >
> > and you might tell me to create the M1 function on the get.m function but I
> > prefer not because I have 9 to ten function and they have lots statement and
> > I prefer to keep them separate
> >
> 
> I've copied your Nabble post here:
> 
> -------------------------------------------------------
> 
> a0=rep(1,40)
> a=rep(0:1,20)
> b=c(rep(1,20),rep(0,20))
> c0=c(rep(0,12),rep(1,28))
> c1=c(rep(1,5),rep(0,35))
> c2=c(rep(1,8),rep(0,32))
> c3=c(rep(1,23),rep(0,17))
> c4=c(rep(1,6),rep(0,34))
> x=matrix(cbind(a0,a,b,c0,c1,c2,c3,c4,rnorm(40)),nrow=40,ncol=9)
> Dat <- cbind(x,rnorm(40,2,30));colnames(Dat) <-
> c("a0","a","b","c0","c1","c2","c3","c4","c5","Y")
> 
> M1 <- function(Trdat,Tedat,mdat,nsam,conv){
> M1list <- NULL
> vectx <- c(1,4,6,7,9)
> vectz <- c(2,3,7,1,4,9)
> X <- Trdat[,vectx]
> Z <- Trdat[,vectz]
> Y <- Trdat[,ncol(Trdat)]
> TesX <- Tedat[,vectx]
> TesZ <- Tedat[,vectz]
> TesY <- Tedat[,ncol(Tedat)]
> Treig <- eigen(crossprod(X))$values
> if(any(abs(Treig) < conv))stop("In M1 the design matrix (X) is
> singular for simulation ",paste(nsam))
> Comp <- c("nCol(X)"= ncol(X),"nCol(Z)"= ncol(Z),"Is
> length(Y)=nrow(X)"= length(Y)==nrow(X),
>           "Is length(Y)=nrow(Z)"= length(Y)==nrow(Z))
> 
> M1list$vectx <- vectx
> M1list$vectz <- vectz
> M1list$X <- X
> M1list$Z <- Z
> M1list$Y <- Y
> M1list$TesX <- TesX
> M1list$TesZ <- TesZ
> M1list$TesY <- TesY
> M1list$Comp <- Comp
> return(M1list)
> }
> 
> 
> get.m <- function(dat,asim,ModelFun,M,conv){
> Sim <- list()
> modInd <- ModelFun(Trdat=dat,Tedat=dat,mdat=dat,nsam=-1,conv=conv)  #
> HERE WHERE I NEED HELP i only need to import vectx and vectz  that is
> why I set Trdat=Tedat=dat
> if(M==1){
> vecx <- modInd$vectx
> vecz <- modInd$vectz
> px <- length(vecx)
> pz <- length(vecz)
> pk <- length(modInd$Comp)
> nam <-colnames(dat[,vecx])
> Asse <- matrix(NA,nrow=asim,ncol=px)
> Check <- matrix(NA,nrow=pk,ncol=asim)
> colnames(Check) <- paste("CheckIter",1:asim,sep="")
> }
> else {
> vecx <- modInd$vectx
> vecz <- modInd$vectz
> px <- length(vecx)
> pz <- length(vecz)
> pk <- length(modInd$Comp)
> nam <-colnames(dat[,vecx])
> Asse <- matrix(NA,nrow=asim,ncol=px)
> Check <- matrix(NA,nrow=pk,ncol=asim)
> colnames(Check) <- paste("CheckIter",1:asim,sep="")
> }
> 
> for(k in 1:asim){
> cat("Iter #",paste(k),"\n")
> #==========================================================================================
> #                         Start Sampling code
> #==========================================================================================
> # Sample the Index for Train Set
> set.seed(k)
> Indx<-sample(1:nrow(dat),nrow(dat),replace=T)
> SamDat <- dat[Indx,]
> # Split Data
> set.seed(k)
> TrainInd <- sample(1:nrow(SamDat), trunc(2*length(1:nrow(SamDat))/3))
> # Sample 2/3 of the data
> TrSet <- SamDat[TrainInd,]  # Train data
>  ######## Hold 1/3 of the data
> TeSet <- SamDat[-TrainInd,]      # hold 1/3 of the data
> Trind <- ceiling((2*length(Indx))/3)
> Model <- ModelFun(Trdat=TrSet,Tedat=TeSet,mdat=dat,nsam=k,conv=conv)
> Y <- Model$Y
> X <- Model$X
> Z <- Model$Z
> TesX <- Model$TesX
> TesZ <- Model$TesZ
> TesY <- Model$TesY
> xnam <-colnames(X)
> znam <-colnames(Z)
> pc <- ncol(X)
> fmla <- as.formula(paste("Y ~",paste(xnam, collapse= "+"),"-1",sep=""))
> fitlm <- lm(formula=fmla,data = data.frame(cbind(X,Y)))
> ResiSqr <- (residuals(fitlm))*(residuals(fitlm))
> Check[,k] <- Model$Comp
> Asse[k,1:pc] <- coef(fitlm)
> 
>    }
> Sim$Check <- Check
> Sim$Asse <- Asse
> return(Asse)
> }
> get.m(dat=Dat,asim=6,ModelFun=M1,M=1,conv=1e-4)
> 
> ------------------------------------------------------
> 
> Your code is quite messy and difficult to follow: I'd write it as follows:
> 
> # Initialize some data
> Dat <- cbind(
>     a0 = rep(1, 40),
>     a = rep(0:1, 20),
>     b = rep(c(1,0), each = 20),
>     c0=c(rep(0,12),rep(1,28)),
>     c1=c(rep(1,5),rep(0,35)),
>     c2=c(rep(1,8),rep(0,32)),
>     c3=c(rep(1,23),rep(0,17)),
>     c4=c(rep(1,6),rep(0,34)),
>     Y = rnorm(40,2,30))
> 
> M1 <- function(Trdat,Tedat,mdat,nsam,conv){
>     vectx <- c(1,4,6,7,9)
>     vectz <- c(2,3,7,1,4,9)
> 
>     X <- Trdat[,vectx]
>     Z <- Trdat[,vectz]
>     Y <- Trdat[,ncol(Trdat)]
> 
>     TesX <- Tedat[,vectx]
>     TesZ <- Tedat[,vectz]
>     TesY <- Tedat[,ncol(Tedat)]
> 
>     Treig <- eigen(crossprod(X))$values
> 
>     if(any(abs(Treig) < conv))
>         stop("In M1 the design matrix (X) is singular for simulation ", nsam)
> 
>     Comp <- c(`nCol(X)`= ncol(X),`nCol(Z)`= ncol(Z),
>                         `Is length(Y)=nrow(X)` = length(Y)==nrow(X),
>                         `Is length(Y)=nrow(Z)` = length(Y)==nrow(Z))
> 
>     list(vectx = vectx,
>           vectz = vectz,
>           X = X, Z = Z, Y = Y,
>           TesX = TesX, TesZ = TesZ,
>           TesY = TesY, Comp = Comp)
> }
> 
> with similar modifications throughout the rest of your code. Hopefully
> you find that easier to read: I certainly do.
> 
> Now, it's still not entirely clear to me what you're asking: but
> perhaps global assignment and/or lexical scoping does what you want?
> 
> Consider these tricks:
> 
> #########################
> add_magic_Z <- function(z){
>     Z <- z
>     function(x) x + z
> }
> 
> add_2 <- function(2)
> 
> add_2(5) # 7
> 
> add_3 <- function(3)
> 
> add_3(0) # 3
> ##########################
> f <- function(x) {
>     X <<- X + x
>     return(x^2)
> }
> 
> X <- -3
> 
> f(5)
> f(10)
> 
> print(X) # increased by the `<<-` inside of f()
> ###########################
> 
> The latter is considered bad programming practice however.
> 
> Cheers,
> Michael
                                          
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to