One solution that does not require matrix multiplication:

Remember that the steady state vector is in the nullspace of I - T.
 Therefore:

require(MASS)
n1 <- Null(t(diag(nrow(T)) - T))
n1 / sum(n1)



On Wed, Dec 12, 2012 at 2:19 AM, annek <an...@ifm.liu.se> wrote:

> Hi,
> I have a transition matrix T for which I want to find the steady state
> matrix for. This could be approximated by taking T^n , for large n.
>
> T= [ 0.8797   0.0382   0.0527   0.0008
>       0.0212    0.8002   0.0041   0.0143
>       0.0981    0.0273   0.8802   0.0527
>       0.0010    0.1343   0.0630   0.9322]
>
> According to a text book I have T^200 should have reached the steady state
> L
>
> L =[0.17458813   0.17458813   0.17458813   0.17458813
>       0.05731902   0.05731902   0.05731902   0.05731902
>       0.35028624   0.35028624   0.35028624   0.35028624
>       0.44160126   0.44160126   0.44160126   0.44160126]
>
> I am addressing the problem using a for loop doing matrix multiplication
> (guess there might be better ways, please suggest) and find a steady state
> matrix after n=30. But if I run the code with n=100 or more I get "Inf" for
> all entities in L. Does anyone know why is that?
>
> The code I use look like this
> #------------------------------------
> rep<-20
>
> T <- Ttest
> for(i in 1:rep){
>  print(i)
>  T<-T%*%Ttest
>  Ttest<-T
> }
> L<-T
> print(L)
> #----------------------------------
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
>
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to