Hi Jim

It is defined and initialised:
line 69 in the differential equation: dmCaT_soma_AB <- (mCaTx(v_soma) -
mCaT_soma_AB)/taumCaT(v_soma)
 and initialised in line 83
dmCaT_soma_AB=0

However, l just noticed the mistake. It needs to be initialised without the
d, i.e. mCaT_soma_AB=0 and not dmCaT_soma_AB

Regards
Jannetta

Regards
Jannetta




On 2 June 2013 02:14, jim holtman <[email protected]> wrote:

> I just did a search through the source and never did find a place that
> 'mCaT_soma_AB'  was defined.  How can you expect to use it if it has not
> been defined.
>
>
> On Sat, Jun 1, 2013 at 8:50 PM, Jannetta Steyn <[email protected]>wrote:
>
>> Hi All
>>
>> I am trying to implement a neural model in R from a paper but I have run
>> into a bit of a problem. The model is getting so complex that I can't
>> really test it in bits any more. At the moment I get this error:
>> Error in eval(expr, envir, enclos) : object 'mCaT_soma_AB' not found
>>
>> I think I have been staring at it too long because I can't see what I have
>> done wrong. Can anyone perhaps spot the error I have made. The full code
>> is
>> posted below.
>>
>> Many thanks
>> Jannetta
>>
>> # TODO: Add comment
>> #
>> # Author: a9912577
>>
>> ###############################################################################
>>
>>
>> library(deSolve)
>>
>> ST <-  function(time, init, parms) {
>> with(as.list(c(init, parms)),{
>>  #functions to calculate activation m and inactivation h of the currents
>> mNax <- function(v) 1/(1+exp(-(v+24.7)/5.29));
>> taumNa <- function(v) 1.32 - (1.26/(1+exp(-v+120)/25));
>> hNax <- function(v) 1/(1+exp((v+48.9)/5.18));
>> tauhNa <- function(v) (0.67/(1+exp(-(v+62.9)/10))) *
>> (1.5+1/(1+exp(v+34.9)/3.6));
>> mCaTx <- function(v) 1/(1+exp(-(v+25)/7.2))
>> taumCaT <- function(v) 55-(49.5/(1+exp(-(v+58)/17)))
>> hCaTx <- function(v) 1/(1+exp((v+36)/7))
>> tauhCaT_AB <-function(v) 87.5-(75/(1+exp(-(v+50)/16.9)))
>> tauhCaT_PD <-function(v) 350-(76/(1+exp(-(v+50)/16.9)))
>> mCaSx <- function(v) 1/(1+exp(-(v+22)/8.5))
>> taumCaS <- function(v) 16-(13.1/(1+exp(-(v+25.1)/26.5)))
>> mNapx <- function(v) 1 / (1+exp(-(v+26.8)/8.2))
>> taumNap <- function(v) 19.8-(10.7/(1+exp(-(v+26.5)/86.)))
>> hNapx <- function(v) 1/1+exp((v+48.5)/4.8)
>> tauhNap <- function(v) 666-(379/(1+exp(-(v+33.6)/11.7)))
>> mhx <-function(v) 1/(1+exp((v+70)/6))
>> taumh <- function(v) 272+(1499/(1+exp(-(v+42.2)/8.73)))
>> mKx <- function(v) 1/(1+exp(-(v+14.2)/11.8));
>> taumK <- function(v) 7.2-(6.4/(1+exp(-(v+28.3)/19.2)))
>>  # AB soma
>> iCaT_soma_AB <- gCaT_soma_AB * mCaT_soma_AB ^ 3 * hCaT_soma_AB * (v_soma -
>> ECaT_soma_AB)
>> iCaS_soma_AB <- gCaS_soma_AB * mCaS_soma_AB ^ 3 * (v_soma - ECaS_soma_AB)
>> iNap_soma_AB <- gNap_soma_AB * mNap_soma_AB ^ 3 * hNap_soma_AB * (v_soma -
>> ENap_soma_AB)
>> ih_soma_AB <- gh_soma_AB * mh_soma_AB ^ 3 * hh_soma_AB * (v_soma -
>> Eh_soma_AB)
>> iK_soma_AB <- gK_soma_AB * mK_soma_AB ^ 4 * mK_soma_AB * (v_soma -
>> EK_soma_AB)
>> iKCa_soma_AB <- gKCa_soma_AB * mKCa_soma_AB ^ 4 * (v_soma - EKCa_soma_AB)
>> # Total current for Calcium
>> totalICa <- iCaT_soma_AB + iCaS_soma_AB
>> # Differential equations
>> dCaConc_soma <- (-F_AB * totalICa - CaConc_soma + C0_AB)/tauCa_AB
>>  mKCax_AB <- function(v, CaConc_soma)
>> (CaConc_soma/(CaConc_soma+30))*(1/(1+exp(-(v+51)/4)))
>> mKCax_PD <- function(v, CaConc_soma)
>> (CaConc_soma/(CaConc_soma+30))*(1/(1+epx(-(v+51)/8)))
>> taumKCa <-function(v) 90.3 - (75.09 / (1+exp(-(v+46)/22.7)))
>> mAx <- function(v) 1/(1+exp(-(v+27)/8.7))
>> taumA <- function(v) 11.6-(10.4/(1+exp(-(v+32.9)/15.2)))
>> hAx <- function(v) 1 / (1+exp((v+46.9)/4.9))
>> tauhA <- function(v) 38.6 - (29.2/(1+exp(-(v+38.9)/26.5)))
>> mProcx <- function(v) 1 / (1+exp(-(v+12)/3.05))
>> taumProc <- 0.5
>>  # Currents as product of maximal conducatance(g), activation(m) and
>> inactivation(h)
>> # Driving force (v-E) where E is the reversal potential of the particular
>> ion
>>  # AB axon
>> iNa_axon_AB <- gNa_axon_AB * mNa_axon ^ 3 * hNa_axon * (v - ENa_axon_AB)
>> iK_axon_AB <- gK_axon_AB * mK_axon ^ 4 * (v - EK_axon_AB)
>> iLeak_axon_AB <- gLeak_axon_AB * (v - ELeak_axon_AB)
>>  dv <- (0 - iNa_axon_AB - iK_axon_AB - iLeak_axon_AB) / C_axon_AB
>> dmNa_axon_AB <- (mNax(v) - mNa_axon_AB)/taumNa(v)
>> dhNa_axon_AB <- (hNax(v) - hNa_axon_AB)/tauhNa(v)
>> dmK_axon_AB <- (mKx(v) - mK_axon_AB)/taumK(v)
>>  dv_soma <- (I - iCaT_soma_AB - iCaS_soma_AB - iNap_soma_AB - ih_soma_AB -
>> iK_soma_AB - iKCa_soma_AB)
>> dmCaT_soma_AB <- (mCaTx(v_soma) - mCaT_soma_AB)/taumCaT(v_soma)
>> dhCaT_soma_AB <- (hCaTx(v_soma) - hCaT_soma_AB)/tauhCaT_AB(v_soma)
>> dmCaS_soma_AB <- (mCaSx(v_soma) - mCaS_soma_AB)/taumCaS(v_soma)
>> dmNap_soma_AB <- (mNapx(v_soma) - mNap_soma_AB)/taumNap(v_soma)
>> dhNap_soma_AB <- (hNapx(v_soma) - hNap_soma_AB)/tauhNap(v_soma)
>> dmh_soma_AB <- (mhx(v_soma) - mh_soma_AB)/taumh(v_soma)
>> dmK_soma_AB <- (mKx(v_soma) - mK_soma_AB)/taumK(v_soma)
>> dmKCa_soma_AB <- (mKCax_AB(v_soma,CaConc_soma) -
>> mKCa_soma_AB)/taumKCa(v_soma)
>>  list(c(dv,dv_soma,dmNa_axon_AB, dhNa_axon_AB, dmK_axon_AB, dmCaT_soma_AB,
>> dhCaT_soma_AB, dmCaS_soma_AB, dmNap_soma_AB, dhNap_soma_AB, dmh_soma_AB,
>> dmK_soma_AB, dmKCa_soma_AB,dCaConc_soma))
>>  })}
>> ## Set initial state
>> init = c(dv=-55,dv_soma=-55,dmNa_axon_AB=0, dhNa_axon_AB=0, dmK_axon_AB=0,
>> dmCaT_soma_AB=0, dhCaT_soma_AB=0, dmCaS_soma_AB=0, dmNap_soma_AB=0,
>> dhNap_soma_AB=0, dmh_soma_AB=0, dmK_soma_AB=0,
>> dmKCa_soma_AB=0,dCaConc_soma=0)
>> ## Set parameters
>> F_AB=0.418
>> C0_AB=0.5
>> tauCa_AB=303
>>
>> ENa_axon_AB=50
>> EK_axon_AB=-80
>> ELeak_axon_AB=-60
>>
>> gNa_axon_AB=0.300
>> gK_axon_AB=0.0525
>> gLeak_axon_AB=20
>>
>> C_axon_AB=0.0015
>>
>> ECaT_soma_AB=55.2e-3
>> ECaS_soma_AB=9e-3
>> ENap_soma_AB=50
>> Eh_soma_AB=-20
>> EK_soma_AB=-80
>> EKCa_soma_AB=-80
>> EA_soma_AB=-8
>> EP_soma_AB=0
>> ELeak_soma_AB=-50
>>
>> gCaT_soma_AB=55.2e-3
>> gCaS_soma_AB=9e-3
>> gNap_soma_AB=2.7e-3
>> gh_soma_AB=0.00054
>> gK_soma_AB=0.0525
>> gKCa_soma_AB=0.600
>> gA_soma_AB=0.0216
>> gP_soma_AB=0.570
>> gLeak_soma_AB=0.000045
>> gAxial_soma_AB=0.003
>> gGap_AB=0.75e-3
>> C_soma_AB=9e-3
>>
>> F_PD=0.515
>> C0_PD=0.5
>> tauCa_PD=300
>>
>> I=6.5
>> parms =
>>
>> c(ENa_axon_AB,EK_axon_AB,ELeak_axon_AB,gNa_axon_AB,gK_axon_AB,gLeak_axon_AB,C_axon_AB,ECaT_soma_AB,ENap_soma_AB,Eh_soma_AB,EK_soma_AB,EKCa_soma_AB,EA_soma_AB,EP_soma_AB,ELeak_soma_AB,gCaT_soma_AB,gCaS_soma_AB,gNap_soma_AB,gh_soma_AB,gK_soma_AB,gKCa_soma_AB,gA_soma_AB,gP_soma_AB,gLeak_soma_AB,gAxial_soma_AB,C0_AB,C0_PD)
>> ## Set integrations times
>> times = seq(from=0, to=100, by = 0.25);
>>
>> out<-ode(y=init, times=times, func=ST, parms=parms)
>> plot(out)
>>
>>         [[alternative HTML version deleted]]
>>
>> ______________________________________________
>> [email protected] mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
>
>
> --
> Jim Holtman
> Data Munger Guru
>
> What is the problem that you are trying to solve?
> Tell me what you want to do, not how you want to do it.
>



-- 

===================================
Web site: http://www.jannetta.com
Email: [email protected]
===================================

        [[alternative HTML version deleted]]

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to