The following may or may not be relevant, but definitely getting somewhat 
different results.
As this was a quick and dirty try while having a snack, it may have bugs.

# Lobo2412.R  -- from R Help 20241213

#Original artificial data

library(optimx)
library(nloptr)
library(alabama)

set.seed(1)
A <- 1.34
B <- 0.5673
C <- 6.356
D <- -1.234
x <- seq(0.5, 20, length.out = 500)
y <- A + B * x + C * x^2 + D * log(x) + runif(500, 0, 3)

#Objective function

X <- cbind(1, x, x^2, log(x))
flobo <- function(theta) {
sum(abs(X %*% theta - y))
}

#Constraint

eps <- 1e-4

hinlobo <- function(theta) {
  abs(sum(X %*% theta) - sum(y)) - 1e-3 + eps # ?? weird! (1e-4 - 1e-3)
}

Hxlobo <- function(theta) {
  X[100, , drop = FALSE] %*% theta - (120 - eps) # ditto -- also constant
}

conobj<-function(tt){
   ob <- flobo(tt)
   ci <- hinlobo(tt)
   if (ci > 0) {ci <- 0}
   ce <- Hxlobo(tt)
   si<-1; se<-1
   val<-ob+si*ci^2+se*ce^2
   cat("f, ci, ce,ob,val:"," ",ci," ",ce," ",ob," ",val," at "); print(tt)
   val
}

t0<-rep(0,4)
conobj(t0)
t1 <- c(2.02, 6.764, 6.186, -20.095)
conobj(t1)
t2 <- c( -0.2186159, -0.5032066,  6.4458823, -0.4125948)
conobj(t2)


solo<-optimr(t0, conobj, gr="grcentral", method="anms", control=list(trace=1))
solo
conobj(solo$par)
#Optimization with nloptr

# Sol = nloptr::auglag(t0, flobo, eval_g_ineq = hinlobo, eval_g_eq = Hxlobo, 
opts =
# list("algorithm" = "NLOPT_LN_COBYLA", "xtol_rel" = 1.0e-8, print_level=1))
# -0.2186159 -0.5032066  6.4458823 -0.4125948

sol <- auglag(par=t0, fn=flobo, hin=hinlobo, heq=Hxlobo, 
control.outer=list(trace=TRUE))
sol

#==================================

J Nash

On 2024-12-13 13:45, Duncan Murdoch wrote:
You posted a version of this question on StackOverflow, and were given advice 
there that you ignored.

nloptr() clearly indicates that it is quitting without reaching an optimum, but you are hiding that message.  Don't do that.

Duncan Murdoch

On 2024-12-13 12:52 p.m., Daniel Lobo wrote:
library(nloptr)

set.seed(1)
A <- 1.34
B <- 0.5673
C <- 6.356
D <- -1.234
x <- seq(0.5, 20, length.out = 500)
y <- A + B * x + C * x^2 + D * log(x) + runif(500, 0, 3)

#Objective function

X <- cbind(1, x, x^2, log(x))
f <- function(theta) {
sum(abs(X %*% theta - y))
}

#Constraint

eps <- 1e-4

hin <- function(theta) {
   abs(sum(X %*% theta) - sum(y)) - 1e-3 + eps
}

Hx <- function(theta) {
   X[100, , drop = FALSE] %*% theta - (120 - eps)
}

#Optimization with nloptr

Sol = nloptr(rep(0, 4), f, eval_g_ineq = hin, eval_g_eq = Hx, opts =
list("algorithm" = "NLOPT_LN_COBYLA", "xtol_rel" = 1.0e-8))$solution
# -0.2186159 -0.5032066  6.4458823 -0.4125948

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide https://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide https://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to